980 resultados para Three-Beam Headlamps.
Resumo:
OneSteel Australian Tube Mills has recently developed a new hollow flange channel cold-formed section, known as the LiteSteel Beam (LSB). The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore this thesis investigated the ultimate shear strength behaviour of LSBs with and without web openings including their elastic buckling and post-buckling characteristics using both experimental and finite element analyses, and developed accurate shear design rules. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the web and flange elements. Therefore finite element analyses were conducted first to investigate the elastic shear buckling behaviour of LSBs to determine the true support condition at the junction between their web and flange elements. An equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations in the cold-formed steel structures code, AS/NZS 4600. Predicted shear capacities from the modified equations and the available experimental results demonstrated the improvements to the shear capacities of LSBs due to the presence of higher level of fixity at the LSB flange to web juncture. A detailed study into the shear flow distribution of LSB was also undertaken prior to the elastic buckling analysis study. The experimental study of ten LSB sections included 42 shear tests of LSBs with aspect ratios of 1.0 and 1.5 that were loaded at midspan until failure. Both single and back to back LSB arrangements were used. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Experimental results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results were presented and compared with corresponding predictions from the current design rules. Appropriate improvements have been proposed for the shear strength of LSBs based on AISI (2007) design equations and test results. Suitable design rules were also developed under the direct strength method (DSM) format. This thesis also includes the shear test results of cold-formed lipped channel beams from LaBoube and Yu (1978a), and the new design rules developed based on them using the same approach used with LSBs. Finite element models of LSBs in shear were also developed to investigate the ultimate shear strength behaviour of LSBs including their elastic and post-buckling characteristics. They were validated by comparing their results with experimental test results. Details of the finite element models of LSBs, the nonlinear analysis results and their comparisons with experimental results are presented in this thesis. Finite element analysis results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. They also confirmed other experimental findings relating to elastic and post-buckling shear strength of LSBs. A detailed parametric study based on validated experimental finite element model was undertaken to develop an extensive shear strength data base and was then used to confirm the accuracy of the new shear strength equations proposed in this thesis. Experimental and numerical studies were also undertaken to investigate the shear behaviour of LSBs with web openings. Twenty six shear tests were first undertaken using a three point loading arrangement. It was found that AS/NZS 4600 and Shan et al.'s (1997) design equations are conservative for the shear design of LSBs with web openings while McMahon et al.'s (2008) design equation are unconservative. Experimental finite element models of LSBs with web openings were then developed and validated by comparing their results with experimental test results. The developed nonlinear finite element model was found to predict the shear capacity of LSBs with web opening with very good accuracy. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and FEA parametric study results. This thesis presents the details of experimental and numerical studies of the shear behaviour and strength of LSBs with and without web openings and the results including the developed accurate design rules.
Resumo:
Radioactive wastes are by-products of the use of radiation technologies. As with many technologies, the wastes are required to be disposed of in a safe manner so as to minimise risk to human health. This study examines the requirements for a hypothetical repository and develops techniques for decision making to permit the establishment of a shallow ground burial facility to receive an inventory of low-level radioactive wastes. Australia’s overall inventory is used as an example. Essential and desirable siting criteria are developed and applied to Australia's Northern Territory resulting in the selection of three candidate sites for laboratory investigations into soil behaviour. The essential quantifiable factors which govern radionuclide migration and ultimately influence radiation doses following facility closure are reviewed. Simplified batch and column procedures were developed to enable laboratory determination of distribution and retardation coefficient values for use in one-dimensional advection-dispersion transport equations. Batch and column experiments were conducted with Australian soils sampled from the three identified candidate sites using a radionuclide representative of the current national low-level radioactive waste inventory. The experimental results are discussed and site soil performance compared. The experimental results are subsequently used to compare the relative radiation health risks between each of the three sites investigated. A recommendation is made as to the preferred site to construct an engineered near-surface burial facility to receive the Australian low-level radioactive waste inventory.
Resumo:
In the current thesis, the reasons for the differential impact of Holocaust trauma on Holocaust survivors, and the differential intergenerational transmission of this trauma to survivors’ children and grandchildren were explored. A model specifically related to Holocaust trauma and its transmission was developed based on trauma, family systems and attachment theories as well as theoretical and anecdotal conjecture in the Holocaust literature. The Model of the Differential Impact of Holocaust Trauma across Three Generations was tested firstly by extensive meta-analyses of the literature pertaining to the psychological health of Holocaust survivors and their descendants and secondly via analysis of empirical study data. The meta-analyses reported in this thesis represent the first conducted with research pertaining to Holocaust survivors and grandchildren of Holocaust survivors. The meta-analysis of research conducted with children of survivors is the first to include both published and unpublished research. Meta-analytic techniques such as meta-regression and sub-set meta-analyses provided new information regarding the influence of a number of unmeasured demographic variables on the psychological health of Holocaust survivors and descendants. Based on the results of the meta-analyses it was concluded that Holocaust survivors and their children and grandchildren suffer from a statistically significantly higher level or greater severity of psychological symptoms than the general population. However it was also concluded that there is statistically significant variation in psychological health within the Holocaust survivor and descendant populations. Demographic variables which may explain a substantial amount of this variation have been largely under-assessed in the literature and so an empirical study was needed to clarify the role of demographics in determining survivor and descendant mental health. A total of 124 participants took part in the empirical study conducted for this thesis with 27 Holocaust survivors, 69 children of survivors and 28 grandchildren of survivors. A worldwide recruitment process was used to obtain these participants. Among the demographic variables assessed in the empirical study, aspects of the survivors’ Holocaust trauma (namely the exact nature of their Holocaust experiences, the extent of family bereavement and their country of origin) were found to be particularly potent predictors of not only their own psychological health but continue to be strongly influential in determining the psychological health of their descendants. Further highlighting the continuing influence of the Holocaust was the finding that number of Holocaust affected ancestors was the strongest demographic predictor of grandchild of survivor psychological health. Apart from demographic variables, the current thesis considered family environment dimensions which have been hypothesised to play a role in the transmission of the traumatic impact of the Holocaust from survivors to their descendants. Within the empirical study, parent-child attachment was found to be a key determinant in the transmission of Holocaust trauma from survivors to their children and insecure parent-child attachment continues to reverberate through the generations. In addition, survivors’ communication about the Holocaust and their Holocaust experiences to their children was found to be more influential than general communication within the family. Ten case studies (derived from the empirical study data set) are also provided; five Holocaust survivors, three children of survivors and two grandchildren of survivors. These cases add further to the picture of heterogeneity of the survivor and descendant populations in both experiences and adaptations. It is concluded that the legacy of the Holocaust continues to leave its mark on both its direct survivors and their descendants. Even two generations removed, the direct and indirect effects of the Holocaust have yet to be completely nullified. Research with Holocaust survivor families serves to highlight the differential impacts of state-based trauma and the ways in which its effects continue to be felt for generations. The revised and empirically tested Model of the Differential Impact of Holocaust Trauma across Three Generations presented at the conclusion of this thesis represents a further clarification of existing trauma theories as well as the first attempt at determining the relative importance of both cognitive, interpersonal/interfamilial interaction processes and demographic variables in post-trauma psychological health and transmission of traumatic impact.
Resumo:
Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.