986 resultados para Third-order nonlinearity
Resumo:
This paper is devoted to modeling elastic behavior of laminated composite shells, with special emphasis on incorporating interfacial imperfection. The conditions of imposing traction continuity and displacement jump across each interface are used to model imperfect interfaces. Vanishing transverse shear stresses on two free surfaces of a shell eliminate the need for shear correction factors. A linear theory underlying elastostatics and kinetics of laminated composite shells in a general configuration is presented from Hamilton's principle. In the special case of vanishing interfacial parameters, this theory reduces to the conventional third-order zigzag theory for perfectly bonded laminated shells. Numerical results for bending and vibration problems of laminated circular cylindrical panels are tabulated and plotted to indicate the influence of the interfacial imperfection. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Based on Reddy's third-order theory, the first-order theory and the classical theory, exact explicit eigenvalues are found for compression buckling, thermal buckling and vibration of laminated plates via analogy with membrane vibration, These results apply to symmetrically laminated composite plates with transversely isotropic laminae and simply supported polygonal edges, Comprehensive consideration of a Winkler-Pasternak elastic foundation, a hydrostatic inplane force, an initial temperature increment and rotary inertias is incorporated. Bridged by the vibrating membrane, exact correspondences are readily established between any pairs of buckling and vibration eigenvalues associated with different theories. Positive definiteness of the critical hydrostatic pressure at buckling, the thermobukling temperature increment and, in the range of either tension loading or compression loading prior to occurrence of buckling, the natural vibration frequency is proved. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports a free vibration analysis of thick plates with rounded corners subject to a free, simply-supported or clamped boundary condition. The plate perimeter is defined by a super elliptic function with a power defining the shape ranging from an ellipse to a rectangle. To incorporate transverse shear deformation, the Reddy third-order plate theory is employed. The energy integrals incorporating shear deformation and rotary inertia are formulated and the p-Ritz procedures are used to derive the governing eigenvalue equation. Numerical examples for plates with different shapes and boundary conditions are solved and their frequency parameters, where possible, are compared with known results. Parametric studies are carried out to show the sensitivities of frequency parameters by varying the geometry, fibre stacking sequence, and boundary condition. (C) 1999 Academic Press.
Resumo:
This paper reviews evidence from previous growth-rate studies on lichens of the yellow-green species of Subgenus Rhizocarpon - the family most commonly used in lichenometric dating. New data are presented from Rhizocarpon section Rhizocarpon thalli growing on a moraine in southern Iceland over a period of 4.33yr. Measurements of 38 lichen thalli, between 2001 and 2005, show that diametral growth rate (DGR, mmyr-1) is a function of thallus size. Growth rates increase rapidly in small thalli (<10 mm diameter), remain high (ca. 0.8 mm yr-1) and then decrease gradually in larger thalli (>50 mm diameter). Mean DGR in southern Iceland, between 2001 and 2005, was 0.64 mm yr-1 (SD = 0.24). The resultant growth-rate curve is parabolic and is best described by a third-order polynomial function. The striking similarity between these findings in Iceland and those of Armstrong (1983) in Wales implies that the shape of the growth-rate curve may be characteristic of Rhizocarpon geographicum lichens. The difference between the absolute growth rate in southern Iceland and Wales (ca. 66% faster) is probably a function of climate and micro-environment between the two sites. These findings have implications for previous lichenometric-dating studies, namely, that those studies which assume constant lichen growth rates over many decades are probably unreliable. © British Geological Survey/ Natural Environment Research Council copyright 2006.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
This thesis presents details on both theoretical and experimental aspects of UV written fibre gratings. The main body of the thesis deals with the design, fabrication and testing of telecommunication optical fibre grating devices, but also an accurate theoretical analysis of intra-core fibre gratings is presented. Since more than a decade, fibre gratings have been extensively used in the telecommunication field (as filters, dispersion compensators, and add/drop multiplexers for instance). Gratings for telecommunication should conform to very high fabrication standards as the presence of any imperfection raises the noise level in the transmission system compromising its ability of transmitting intelligible sequence of bits to the receiver. Strong side lobes suppression and high and sharp reflection profile are then necessary characteristics. A fundamental part of the theoretical and experimental work reported in this thesis is about apodisation. The physical principle of apodisation is introduced and a number of apodisation techniques, experimental results and numerical optimisation of the shading functions and all the practical parameters involved in the fabrication are detailed. The measurement of chromatic dispersion in fibres and FBGs is detailed and an estimation of its accuracy is given. An overview on the possible methods that can be implemented for the fabrication of tunable fibre gratings is given before detailing a new dispersion compensator device based on the action of a distributed strain onto a linearly chirped FBG. It is shown that tuning of second and third order dispersion of the grating can be obtained by the use of a specially designed multipoint bending rig. Experiments on the recompression of optical pulses travelling long distances are detailed for 10 Gb/s and 40 Gb/s. The characterisation of a new kind of double section LPG fabricated on a metal-clad coated fibre is reported. The fabrication of the device is made easier by directly writing the grating through the metal coating. This device may be used to overcome the recoating problems associated with standard LPGs written in step-index fibre. Also, it can be used as a sensor for simultaneous measurements of temperature and surrounding medium refractive index.
Resumo:
A method for inscribing fiber bragg gratings (FBG) using direct, point-by-point writing by an infrared femtosecond laser was described. The method requires neither phase-masks nor photosensitized fibers and hence offers remarkable technology flexibility. It requires a very short inscription time of less than 60 s per grating. Gratings of first to third order were produced in non-photosensitized, standard telecommunication fiber (SMF) and dispersion shifted fiber (DSF). The gratings produced in this method showed low insertion loss, narrow linewidth and strong, fundamental or high-order resonance.
Resumo:
The kinetics and mechanisms of the ring-opening polymerization of oxetane were studied using cationic and coordinated anionic catalysts. The cationic initiators used were BF30Et2!/ethanol, BF30Et2!/ethanediol and BF30Et2/propantriol. Kinetic determinations with the BF30Et2/diol system indicated that a 1: 1 BF3:0H ratio gave the maximum rate of polymerization and this ratio was employed to detenmne the overall rates of polymerization. An overall second-order dependence was obtained when the system involved ethanediol or propantriol as co-catalyst and a 3/2-order dependence with ethanol, in each case the monomer gave a first-order relationship. This suggested that two mechanisms accounted for the cationic polymerization. These mechanisms were investigated and further evidence for these was obtained from the study of the complex formation of BF30Et2 and the co-catalysts by 1H NMR. Molecular weight studies (using size-exclusion chromatography) indicated that the hydroxyl ion acted as a chain transfer reagent when the [OH] > [BF3]. A linear relationship was observed when the number average molecular weight was plotted against [oxetane] at constant [BF3:0H], and similarly a linear dependency was observed on the BF3:0H 1:1 adduct at constant oxetane concentration. Copolymerization of oxetane and THF was carried out using BF30Et2/ethanol system. The reactivity ratios were calculated as rOXT = 1.2 ± 0.30 and rTHF = 0.14 ± 0.03. These copolymers were random copolymers with no evidence of oligomer formation. The coordinated anionic catalyst, porphinato-aluminium chloride [(TPP)AICl], was used to produce a living polymerization of oxetane. An overall third-order kinetics was obtained, with a second-order with respect to the [(TPP)AICl] and a first-order with respect to the [oxetane] and a mechanism was postulated using these results. The stereochemistry of [(TPP)AlCl] catalyst was investigated using cyclohexene and cyclopentene oxide monomers, using extensive 1H NMR, 2-D COSY and decoupling NMR techniques it was concluded that [(TPP)AlCl] gave rise to stereoregular polymers.
Resumo:
Summary form only given. A novel method for tuning the second and the third order dispersion using a simple multi-point bending device has been demonstrated. A simple model has been developed that allows to calculate the exact bending profile required for compensation for the given values of dispersion and dispersion slope.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
Objective - Atrial fibrillation (AF) patients are prescribed oral-anticoagulant (OAC) therapy, often warfarin, to reduce stroke risk. We explored existing qualitative evidence about patients’ and health professionals’ experiences of OAC therapy. Methods - Systematic searches of eight bibliographic databases were conducted. Quality was appraised using the Critical Appraisal Skills Programme tool and data from ten studies were synthesised qualitatively. Results - Four third-order constructs, emerged from the final step in the analysis process: (1) diagnosing AF and the communication of information, (2) deciding on OAC therapy, (3) challenges revolving around patient issues, and (4) healthcare challenges. Synthesis uncovered perspectives that could not be achieved through individual studies. Conclusion - Physicians’ and patients’ experiences present a dichotomy of opinion on decision-making, which requires further exploration and changes in practice. Outcomes of workload pressure on both health professionals and patients should be investigated. The need for on-going support and education to patients and physicians is critical to achieve best practice and treatment adherence. Practice implications - Such research could encourage health professionals to understand and attend better to the needs and concerns of the patient. Additionally these findings can be used to inform researchers and healthcare providers in developing educational interventions with both patients and health professionals.
Resumo:
Summary form only given. A novel method for tuning the second and the third order dispersion using a simple multi-point bending device has been demonstrated. A simple model has been developed that allows to calculate the exact bending profile required for compensation for the given values of dispersion and dispersion slope.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.