968 resultados para Thin nanostructured films
Resumo:
Raman scattering measurement has been used to study the residual strains in the thin 3C-SiC/Si(001) epilayers with a variation of film thickness from 0.1 to 1.2 mu m. which were prepared by chemical vapor deposition (CVD)growth. Two methods have been exploited to figure our the residual strains and the exact LO bands. The final analyzing results show that residual strains exist in the 3C-SiC epilayers. The average stress is 1.3010 GPa, and the relative change of the lattice constant is 1.36 parts per thousand. Our measurements also show that 3C-SiC phonons are detectable even for the samples with film thickness in the range of 0.1 to 0.2 mu m. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Copper phthalocyanine organic thin-film transistors (OTFTs) were fabricated with top-gate geometry and the effects of different gate dielectrics on the transport proper-ties in OTFTs were studied. The mobility was found to be gate voltage dependent and the results showed that besides the charge density in the accumulation layer, the energetic disorder induced by gate dielectrics played an important role in determining the field-effect mobility in OTFTs.
Resumo:
Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 degrees C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U-q0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes.
Resumo:
In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.
Resumo:
inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO3 and H4SiW12O40 aqueous solutions. Repeating the above synthesis process, Ag4SiW12O40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles.
Resumo:
Surface morphology of polystyrene (PS) films on different substrates by spin-coating before and after annealing was observed using atomic force microscopy (AFM). The effects of polymer molecular weight, substrates, solvents, and annealing conditions on the morphology of the films were investigated. Before annealing, the grain height decreases, and simultaneously the grain diameter increases with molecular weight (M-w) within the measured molecular weight. After annealing. the situation is opposite, i.e., the grain height increases while the grain diameter decreases with M-w. Furthermore, after annealing the smaller surface roughness (Ra) was obtained. It was also found that film surface roughness (Ra) depends on the vapor pressure and dipole moment of different used solvents as well as the substrates. The experimental results show that when the used solvents have similar dipole moment but different vapor pressure, the Ra of PS film decreased with the decreasing vapor pressure of solvents whether on silicon or on mica. And when the used solvents have close vapor pressure but different dipole moment, the Ra decreased with the increasing of solvent dipole moments on both substrates.
Resumo:
The molecular chain and lamellar crystal orientation in ultrathin films (thickness < 100 nm) of poly(di-n-hexylsilane) (PDHS) on silicon wafer substrates have been investigated by using transmission electronic microscopy, wide-angle X-ray diffraction, atomic force microscopy, and UV absorption spectroscopy. PDHS showed a film thickness-dependent molecular chain and lamellar crystal orientation. Lamellar crystals grew preferentially in flat-on orientation in the monolayer ultrathin films of PDHS, i.e., the silicon backbones were oriented along the surface-normal direction. By contrast, the orientation of lamellar crystals was preferentially edge-on in ultrathin films thicker than ca. 13 nm, i.e., the silicon backbones were oriented parallel to the substrate surface. We interpret the different orientations of molecular chain and lamellar crystal as due to the reduction of the entropy of the polymer chain near the substrate surface and the particularity of the crystallographic (001) plane of flat-on lamellae, respectively. A remarkable influence of the orientations of the silicon backbone on the UV absorption of these PDHS ultrathin films was observed due to the one-dimensional nature of sigma-electrons delocalized along the silicon backbone.
Resumo:
The dewetting process of thin polystyrene (PS) film on flat and stripe-patterned substrates is presented. Different dewetting processes were observed when the thin PS films annealed at above the glass transition temperature on these different kinds of substrates. The final dewetting on the flat substrate led to formation of polygonal liquid droplets, while on the stripe-patterned substrate, the droplets were observed to align at the centers of the stripes. A possible explanation for the dewetting process on the stripe-patterned substrate is proposed.
Resumo:
The nucleation of calcium phosphate on the substrate of steatic acid Langmuir-blodgett film at the initial stage was investigated by atomic force microscopy. Nano-dots, nano-wires and nano-islands were observed in sequence for the first time, reflecting the nucleation of calcium phosphate and the molecular arrangement of carboxylic layer. The nucleation rates perpendicular and parallel to the carboxylic terminal group were estimated from the height and diameter of the calcium phosphate crystals, respectively. And this stage was distinct from the late explosive grown stage, in which the change of the morphology was not obvious. The approaches based on this discovery would lead to the development of new strategies in the controlled synthesis of inorganic nano-phases and the assembly of organized composite and ceramic materials.
Resumo:
The device performances of copper phthalocyanine (CuPc)-based organic thin-film transistors (OTFTs) in main components of air were studied. We found that the device stored in O-2 humidified by water exhibited the changes of electric characteristics including positive-shifted threshold voltage and lower I-on/I-off but unchanged mobility, which was similar to the device exposed to room air. These changes are attributed to O-2 doping to copper phthalocyanine thin film assisted by water. Furthermore, a cross-linked polyvinyl alcohol film was used as encapsulation layer to prevent the permeation of O-2 and water, which resulted in excellent stability even when devices were placed in air for over a year. Therefore, current studies will push the development of OTFTs for practical applications.
Resumo:
Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propylthiethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by H-1 NMR IR and MS, The monomer acts as a ligand for Tb3+ ion and as a sol-gel precursor. Band emission front Tb3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the D-5(4) level of Tb3+ ion falls in the exciting range to sensitize Tb3+ ion fluorescence.