970 resultados para Thermogravimetric Analysis (TGA)
Resumo:
AbstractIn this study, the spray drying technique was used to prepare L-ascorbic acid (AA) microparticles encapsulated with galactomannan-an extract from the seeds of the Delonix regia species. The physico-chemical characteristics, antioxidant activity, and encapsulation efficiency of the AA microparticles were evaluated and characterized using thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The free-radical scavenging activity of the AA microparticles was determined at different environmental conditions using DPPH (1,1-diphenyl-2-picryl-hydrazyl). X-ray diffraction measurements demonstrated a loss of crystallinity in AA after the encapsulation process, and a DSC scan also showed the loss of the compound's melting peak. Thermogravimetric analysis showed small differences in the thermal stability of galactomannan before and after the incorporation of AA. The mean diameters of the obtained spherical microspheres were in the range of 1.39 ± 0.77 µm. The encapsulation efficiency of AA microparticles in different environmental conditions varied from 95.40 to 97.92, and the antioxidant activity showed values ranging from 0.487 to 0.550 mg mL-1.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
Solid samples containing a Ca2Fe2O5 phase were synthesized using the Pechini method. The samples were characterized using X-ray diffraction, thermogravimetric analysis, differential thermal analysis, X-ray fluorescence, nitrogen adsorption/desorption isotherms, and scanning electron microscopy. The stability of the Ca2Fe2O5 phase was evaluated in the photocatalytic degradation of methylene blue (MB) in aqueous solution in the presence of bubbling gas (air, N2, or CO2). The presence of CO2 is known to suppress MB degradation. After the photocatalytic test, changes were observed in the crystalline phase of all systems. These results suggest the low stability of the Ca2Fe2O5 phase in aqueous systems and the significant effect of CO2 on the photocatalytic activity of the Ca2Fe2O5 phase.
Resumo:
A new Cu(II) trimers, [Cu3(dcp)2(H2O)8]. 4DMF, with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H3dcp) has been prepared by solvent method. Its solid-state structure has been characterized by elemental analysis, thermal analysis (TGA and DSC), and single crystal X-ray diffraction. X-ray crystallographic studies reveal that this complex has extended 1-D,2-D and 3-D supramolecular architectures directed by weak interactions (hydrogen bond and aromatic π-π stacking interaction) leading to a sandwich solid-state structure.
Resumo:
In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.
Resumo:
The driving forces for current research of flame retardants are increased fire safety in combination with flame retardant formulations that fulfill the criteria of sustainable production and products. In recent years, important questions about the environmental safety of antimony, and in particular, brominated flame retardants have been raised. As a consequence of this, the current doctoral thesis work describes efforts to develop new halogen-free flame retardants that are based on various radical generators and phosphorous compounds. The investigation was first focused on compounds that are capable of generating alkyl radicals in order to study their role on flame retardancy of polypropylene. The family of azoalkanes was selected as the cleanest and most convenient source of free alkyl radicals. Therefore, a number of symmetrical and unsymmetrical azoalkanes of the general formula R-N=N-R’ were prepared. The experimental results show that in the series of different sized azocycloalkanes the flame retardant efficacy decreased in the following order: R = R´= cyclohexyl > cyclopentyl > cyclobutyl > cyclooctanyl > cyclododecanyl. However, in the series of aliphatic azoalkanes compounds, the efficacy decreased as followed: R = R´= n-alkyl > tert-butyl > tert-octyl. The most striking difference in flame retardant efficacy was observed in thick polypropylene plaques of 1 mm, e.g. azocyclohexane (AZO) had a much better flame retardant performance than did the commercial reference FR (Flamestab® NOR116) in thick PP sections. In addition, some of the prepared azoalkane flame retardants e.g. 4’4- bis(cyclohexylazocyclohexyl) methane (BISAZO) exhibited non-burning dripping behavior. Extrusion coating experiments of flame retarded low density polyethylene (LDPE) onto a standard machine finished Kraft paper were carried out in order to investigate the potential of azoalkanes in multilayer facings. The results show that azocyclohexane (AZO) and 4’4-bis (cyclohexylazocyclohexyl) methane (BISAZO) can significantly improve the flame retardant properties of low density polyethylene coated paper already at 0.5 wt.% loadings, provided that the maximum extrusion temperature of 260 oC is not exceeded and coating weight is kept low at 13 g/m2. In addition, various triazene-based flame retardants (RN1=N2-N3R’R’’) were prepared. For example, polypropylene samples containing a very low concentration of only 0.5 wt.% of bis- 4’4’-(3’3’-dimethyltriazene) diphenyl ether and other triazenes passed the DIN 4102-1 test with B2 classification. It is noteworthy that no burning dripping could be detected and the average burning times were very short with exceptionally low weight losses. Therefore, triazene compounds constitute a new and interesting family of radical generators for flame retarding of polymeric materials. The high flame retardant potential of triazenes can be attributed to their ability to generate various types of radicals during their thermal decomposition. According to thermogravimetric analysis/Fourier transform infrared spectroscopy/MS analysis, triazene units are homolytically cleaved into various aminyl, resonance-stabilized aryl radicals, and different CH fragments with simultaneous evolution of elemental nitrogen. Furthermore, the potential of thirteen aliphatic, aromatic, thiuram and heterocyclic substituted organic disulfide derivatives of the general formula R-S-S-R’ as a new group of halogen-free flame retardants for polypropylene films have been investigated. According to the DIN 4102- 1 standard ignitibility test, for the first time it has been demonstrated that many of the disulfides alone can effectively provide flame retardancy and self-extinguishing properties to polypropylene films at already very low concentrations of 0.5 wt.%. For the disulfide family, the highest FR activity was recorded for 5’5’-dithiobis (2-nitrobenzoic acid). Very low values for burning length (53 mm) and burning time (10 s) reflect significantly increased fire retardant performance of this disulfide compared to other compounds in this series as well as to Flamestab® NOR116. Finally, two new, phosphorus-based flame retardants were synthesized: P’P-diphenyl phosphinic hydrazide (PAH) and melamine phenyl phosphonate (MPhP). The DIN 4102-1 test and the more stringent UL94 vertical burning test (UL94 V) were used to assess the formulations ability to extinguish a flame once ignited. A very strong synergistic effect with azoalkanes was found, i.e. in combination with these radical generators even UL94 V0 rate could be obtained.
Resumo:
Nous avons mis au point une approche novatrice pour la synthèse d’un matériau de cathode pour les piles lithium-ion basée sur la décomposition thermique de l’urée. Les hydroxydes de métal mixte (NixMnxCo(1-2x)(OH)2) ont été préparés (x = 0.00 à 0.50) et subséquemment utilisés comme précurseurs à la préparation de l’oxyde de métal mixte (LiNixMnxCo(1-2x)O2). Ces matériaux, ainsi que le phosphate de fer lithié (LiFePO4), sont pressentis comme matériaux de cathode commerciaux pour la prochaine génération de piles lithium-ion. Nous avons également développé un nouveau traitement post-synthèse afin d’améliorer la morphologie des hydroxydes. L’originalité de l’approche basée sur la décomposition thermique de l’urée réside dans l’utilisation inédite des hydroxydes comme précurseurs à la préparation d’oxydes de lithium mixtes par l’intermédiaire d’une technique de précipitation uniforme. De plus, nous proposons de nouvelles techniques de traitement s’adressant aux méthodes de synthèses traditionnelles. Les résultats obtenus par ces deux méthodes sont résumés dans deux articles soumis à des revues scientifiques. Tous les matériaux produits lors de cette recherche ont été analysés par diffraction des rayons X (DRX), microscope électronique à balayage (MEB), analyse thermique gravimétrique (ATG) et ont été caractérisés électrochimiquement. La performance électrochimique (nombre de cycles vs capacité) des matériaux de cathode a été conduite en mode galvanostatique.
Resumo:
Le fullerène C60, une molécule sphérique, et le C70, un analogue ellisoïde, sont des composés aromatiques convexes constitués exclusivement d'atomes de carbone. La nature aromatique de la surface de ces cages de carbone rend possible leur association à l'état solide avec d'autres molécules aromatiques de topologie complémentaire. En particulier, l'association des fullerènes avec des composés présentant des motifs concaves aromatiques, via une association de type concave-convexe, est favorable. En effet, les interactions π•••π de type concave-convexe sont amplifiées grâce à la complémentarité topologique des partenaires impliqués. Le centrohexaindane est un hydrocarbure non planaire rigide qui a été synthétisé pour la première fois en 1988 par Kuck et collaborateurs. Cette molécule possède quatre surfaces aromatiques concaves orientées dans une géométrie tétraédrique qui sont susceptibles d'interagir favorablement avec les fullerènes. Nous avons ainsi avec succès cocristallisé le centrohexaindane avec les fullerènes C60 et C70. Puis, nous avons étudié les assemblages à l'état solide entre le centrohexaindane et les fullerènes par l'analyse des structures résolues via diffraction des rayons X. Les surfaces concaves aromatiques du centrohexaindane se sont révélées être propices à une association avec les fullerènes C60 et C70 via des interactions π•••π de type concave-convexe, tel que prévu. En outre, nous avons découvert que les liaisons C-H situées à la périphérie du centrohexaindane prennent part à une multitude de contacts C-H•••π avec les molécules de fullerène. Les échantillons de cocristaux composés de centrohexaindane et de fullerène ont aussi été caractérisés par diffraction de poudre des rayons X et par analyse thermogravimétrique dans le but d'en évaluer l'homogénéité.
Resumo:
The present work attempts to trace the variation in the physical and chemical behavior of ilmenite, since its release from country rocks and subsequent transportation to the coast through the progressive weathering environments of laterite, sedimentary rocks, rivers and estuarine systems. Since the hinterland of the study area consists of crystalline and sedimentary rocks and their weathered forms (laterites), the contribution of each lithological system to the beach placer is attempted. The results of the study show that the most magnetic fraction contains more content of altered phases than the relatively unweathered fractions. The fractions separated above 0.35A define a high grade of ilmenite ore enriched in Ti content. The lattice volume generally decreases with alteration. The magnetic studies revels that the Chavara ilmenite are found to be made up to low magnetic crops with about 46% of the bulk ilmenite constituted by fractions separated at above 0.35A. In the Manavalakurichi ilmenite on the other hand, around 91% of the beach ilmenite is made of fractions separated at or below 0.3A
Resumo:
Poly(ethylene terephthalate) (PET) nanocomposites with single-walled carbon nanotubes (SWNTs) have been prepared by a simple melt compounding method. With increasing concentration (0-3 wt %) of SWNTs, the mechanical and dynamic mechanical properties improved, corresponding to effective reinforcement. Melt rheological characterization indicated the effective entanglements provided by SWNTs in the melt state as well. Thermogravimetric analysis suggested no influence of SWNTs on the thermal stability of PET. Electrical conductivity measurements on the composite films pointed out that the melt compounded SWNTs can result in electrical percolation albeit at concentrations exceeding 2 wt %.
Resumo:
In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani- NR semi-interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation techpique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2-4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry.
Resumo:
In this article, we report the preparation of conducting natural rubber (NR) with polyaniline (Pani). NR was made into a conductive material by the compounding of NR with Pani in powder form. NR latex was made into a conductive material by the in situ polymerization of aniline in the presence of NR latex. Different compositions of Pani- NR semi-interpenetrating networks were prepared, and the dielectric properties of all of the samples were determined in microwave frequencies. The cavity perturbation techpique was used for this study. A HP8510 vector network analyzer with a rectangular cavity resonator was used for this study. S bands 2-4 GHz in frequency were used. Thermal studies were also carried out with thermogravimetric analysis and differential scanning calorimetry.
Resumo:
Polymers exhibit low electron density and they are radiolucent. Polymers can be made radiopaque by different techniques. We report a method for the preparation of radiopaque material from natural rubber (NR). NR in its latex form was iodinated. Iodinated natural rubber (INR) was characterized by using UV, thermo gravimetric analysis (TGA), and X-ray images. INR was compounded at high and low temperatures and its physical properties were measured. The low temperature cured samples show good radiopacity and conductivity. The optical density of low temperature cured samples was measured.
Resumo:
ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.
Resumo:
The thermal degradation of short polyester fiber reinforced polyurethane composites with and without different bonding agents has been studied by thermogravimetric analysis . It was found that degradation of the polyurethane takes place in two steps and that of the composites takes place in three steps. With the incorporation of 30 phr of fiber in the matrix , the onset of degradation was shifted from 230 to 238 ° C. The presence of bonding agents in the virgin elastomer and the composite gave an improved thermal stability . Results of kinetic studies showed that the degradation of polyurethane and the reinforced composites with and without bonding agents follows first -order reaction kinetics