997 resultados para Thermal desorption.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous efforts have been dedicated to the synthesis of large-volume methacrylate monoliths for large-scale biomolecules purification but most were obstructed by the enormous release of exotherms during preparation, thereby introducing structural heterogeneity in the monolith pore system. A significant radial temperature gradient develops along the monolith thickness, reaching a terminal temperature that supersedes the maximum temperature required for structurally homogenous monoliths preparation. The enormous heat build-up is perceived to encompass the heat associated with initiator decomposition and the heat released from free radical-monomer and monomer-monomer interactions. The heat resulting from the initiator decomposition was expelled along with some gaseous fumes before commencing polymerization in a gradual addition fashion. Characteristics of 80 mL monolith prepared using this technique was compared with that of a similar monolith synthesized in a bulk polymerization mode. An extra similarity in the radial temperature profiles was observed for the monolith synthesized via the heat expulsion technique. A maximum radial temperature gradient of only 4.3°C was recorded at the center and 2.1°C at the monolith peripheral for the combined heat expulsion and gradual addition technique. The comparable radial temperature distributions obtained birthed identical pore size distributions at different radial points along the monolith thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal heat sources may not only consume energy directly through their operation (e.g. lighting), but also contribute to building cooling or heating loads, which indirectly change building cooling and heating energy. Through the use of building simulation technique, this paper investigates the influence of building internal load densities on the energy and thermal performance of air conditioned office buildings in Australia. Case studies for air conditioned office buildings in major Australian capital cities are presented. It is found that with a decrease of internal load density in lighting and/or plug load, both the building cooling load and total energy use can be significantly reduced. Their effect on overheating hour reduction would be dependent on the local climate. In particular, it is found that if the building total internal load density is reduced from the base case of “medium” to “extra–low, the building total energy use under the future 2070 high scenario can be reduced by up to 89 to 120 kWh/m² per annum and the overheating problem could be completely avoided. It is suggested that the reduction in building internal load densities could be adopted as one of adaptation strategies for buildings in face of the future global warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through larger-scale molecular dynamics simulations, we investigated the impacts from vacancy-initiated linkages on the thermal conductivity of bilayer graphene sheets (of size L × W = 24.5 nm × 3.7 nm). Three different interlayer linkages, including divacancy bridging, “spiro” interstitial bridging and Frenkel pair defects, are considered. It is found that the presence of interlayer linkages induces a significant degradation in the thermal conductivity of the bilayer graphene sheet. The degradation is strongly dependent on the interlayer linkage type, concentration and location. More importantly, the linkages that contain vacancies lead to more severe suppression of the thermal conductivity, in agreement with theoretical predictions that vacancies induce strong phonon scattering. Our finding provides useful guidelines for the application of multilayer graphene sheets in practical thermal management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) has been introduced over the past several years as a promising method for nitrogen oxide (NOx) removal. The intent, when using NTP, is to selectively transfer input electrical energy to the electrons, and to not expend this in heating the entire gas stream, which generates free radicals through collisions, and promotes the desired chemical changes in the exhaust gases. The generated active species react with the pollutant molecules and decompose them. This paper reviews and summarizes relevant literature regarding various aspects of the application of {NTP} technology on {NOx} removal from exhaust gases. A comprehensive description of available scientific literature on {NOx} removal using {NTP} technology is presented, including various types of NTP, e.g. dielectric barrier discharge, corona discharge and electron beam. Furthermore, the combination of {NTP} with catalyst and adsorbent for better {NOx} removal efficiency is presented in detail. The removal of {NOx} from both simulated gases and real diesel engines is also considered in this review paper. As {NTP} is a new technique and is not yet commercialized, there is a need for more studies to be performed in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The output of a differential scanning fluorimetry (DSF) assay is a series of melt curves, which need to be interpreted to get value from the assay. An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called “Meltdown,” conducts four main activities—control checks, curve normalization, outlier rejection, and melt temperature (Tm) estimation—and performs optimally in the presence of triplicate (or higher) sample data. The final output is a report that summarizes the results of a DSF experiment. The goal of Meltdown is not to replace human analysis of the raw fluorescence data but to provide a meaningful and comprehensive interpretation of the data to make this useful experimental technique accessible to inexperienced users, as well as providing a starting point for detailed analyses by more experienced users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in nanomaterials/nanostructures offer the possibility of fabricating multifunctional materials for use in engineering applications. Carbon nanotube (CNT)-based nanostructures are a representative building block for these multifunctional materials. Based on a series of in silico studies, we investigated the possibility of tuning the thermal conductivity of a three-dimensional CNT-based nanostructure: a single-walled CNT-based super-nanotube. The thermal conductivity of the super-nanotubes was shown to vary with different connecting carbon rings and super-nanotubes with longer constituent single-walled CNTs and larger diameters had a smaller thermal conductivity. The inverse of the thermal conductivity of the super-nanotubes showed a good linear relationship with the inverse of the length. The thermal conductivity was approximately proportional to the inverse of the temperature, but was insensitive to the axial strain as a result of the Poisson ratio. These results provide a fundamental understanding of the thermal conductivity of the super-nanotubes and will guide their future design/fabrication and engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to some embodiments, the present invention provides a novel photovoltaic solar cell system from photovoltaic modules that are vertically arrayed in a stack format using thin film semiconductors selected from among org. and inorg. thin film semiconductors. The stack cells may be cells that are produced in a planar manner, then vertically oriented in an angular form, also termed herein tilted, to maximize the light capturing aspects. The use of a stack configuration system as described herein allows for the use of a variety of electrode materials, such as transparent materials or semitransparent metals. Light concn. can be achieved by using fresnel lens, parabolic mirrors or derivs. of such structures. The light capturing can be controlled by being reflected back and forth in the photovoltaic system until significant quantities of the resonant light is absorbed. Light that passes to the end and can be reflected back through the device by beveling or capping the end of the device with a different refractive index material, or alternatively using a reflective surface. The contacting between stacked cells can be done in series or parallel. According to some embodiments, the present invention uses a concentrator architecture where the light is channeled into the cells that contain thermal fluid channels (using a transparent fluid such as water) to absorb and hence reduce the thermal energy generation.