906 resultados para Thermal and photochemical transformations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micelles as media for chemical reactions exhibit features that are unique in comparison to ordinary non-aqueous or aqueous solvent media. A thermal or photochemical reaction conducted in micellar media is influenced by the micellar environmental effects resulting in control and/or modification of reactivity. The salient features of micelles and their influence on photochemical reactivity are briefly discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-standing and important problem in glass science has been carrier-type reversal (CTR) in semiconducting glasses. This phenomenon is exhibited by Pb-Ge-Se glasses also. It has been addressed here by carrying out detailed electrical, thermal, and spectroscopic investigations. PbxGe42-xSe58 (x = 0-20) glasses were prepared by a two stage melt-quenching process and characterized using x-ray diffraction, high-resolution electron microscropy, and energy dispersive analysis of x-rays. Thermoelectric power and high-pressure electrical resistivity have been measured. IR, Raman, and X-ray adsorption near edge structure spectroscopies have been used for examining the glass structures as well as differential scanning calorimetry (DSC) for studying the thermal properties. A structural model based on the chemical nature of the constituents has been proposed to account for the observed properties of these glasses. Effect of Pb incorporation on local structures and qualitative consequences on the energy band structures of Ge-Se glasses has been considered. The p -->n transition has been attributed to the energetic disposition of the sp(3)d(2) band of Pb atoms, which is located closely above the lone pair band of selenium. This feature makes Pb unique in the context of p -->n transition of chalcogenide glasses. The model can be extended successfully to account for the CTR behavior observed in Bi containing chalcogenide glasses also.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoindentation is applied to the two polymorphs of aspirin to examine and differentiate their interaction anisotropy and shear instability. Aspirin provides an excellent test system for the technique because: (i) polymorphs I and II exhibit structural similarity in two dimensions, thereby facilitating clear examination of the differences in mechanical response in relation to well-defined differences between the two crystal structures; (ii) single crystals of the metastable polymorph II have only recently become accessible; (iii) shear instability has been proposed for II. Different elastic moduli and hardness values determined for the two polymorphs are correlated with their crystal structures, and the interpretation is supported by measured thermal expansion coefficients. The stress-induced transformation of the metastable polymorph II to the stable polymorph I can be brought about rapidly by mechanical milling, and proceeds via a slip mechanism. This work establishes that nanoindentation provides ``signature'' responses for the two aspirin polymorphs, despite their very similar crystal structures. It also demonstrates the value of the technique to quantify stability relationships and phase transformations in molecular crystals, enabling a deeper understanding of polymorphism in the context of crystal engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Riboflavin tetraacetate-catalyzed aerobic photooxidation of 1-(4-methoxyphenyl)ethanol was investigated as a model reaction under blue visible light in different soft gel materials, aiming to establish their potential as reaction vessels for photochemical transformations. Three strategies involving different degrees of organization of the catalyst within the gel network were explored, and the results compared to those obtained in homogeneous and micellar solutions. In general, physical entrapment of both the catalyst and the substrate under optimized concentrations into several hydrogel matrices (including low-molecular-weight and biopolymer-based gels) allowed the photooxidation with conversions between 55 and 100% within 120 min (TOF similar to 0.045-0.08 min(-1); k(obs) similar to 0.011-0.028 min(-1)), albeit with first-order rates ca. 1-3-fold lower than in solution under comparable non-stirred conditions. Remarkably, the organogel made of a cyclohexane-based bisamide gelator in CH3CN not only prevented the photodegradation of the catalyst but also afforded full conversion in less than 60 min (TOF similar to 0.167 min(-1); k(obs) similar to 0.073 min(-1)) without the need of additional proton transfer mediators (e. g., thiourea) as it occurs in CH3CN solutions. In general, the gelators could be recycled without detriment to their gelation ability and reaction rates. Moreover, kinetics could be fine-tuned according to the characteristics of the gel media. For instance, entangled fibrillar networks with relatively high mechanical strength were usually associated with lower reaction rates, whereas wrinkled laminated morphologies seemed to favor the reaction. In addition, the kinetics results showed in most cases a good correlation with the aeration efficiency of the gel media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of inertial, thermal and rate - sensitive effects on the void growth at high strain rate in a thermal - viscoplastic solid is investigated by means of a theoretical model presented in the present paper. Numerical analysis of the model suggests that inertial, thermal and rate - sensitive effects are three major factors which greatly influence the behavior of void growth in the high strain rate case. Comparison of the mathematical model proposed in the present work and Johnson's model shows that if the temperature - dependence is considered, material viscosity eta can take the experimentally measured values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of metal atoms on photochemical transformations has been investigated by studies of the cis-trans isomerization of β-styrylferrocene.

The photostationary state lies entirely on the side of the trans isomer in the cases of direct irradiation at 3130 Å or at 3660 Å. The quantum yield at 3130 Å is 0.00650 and does not vary with concentration. In the presence of benzophenon as sensitizer the quantum yield is 0.00540. On the other hand, the quantum yield for direct irradiation at 3660 Å decreases with increasing concentration of cis β- styrylferrocene varying from 0.00365 to 0.00198.

These results lead to the suggestion that the isomerization takes place from a triplet state of β-styrylferrocene which probably has higher energy than the lowest triplet; reaction from the third triplet seems most likely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel GeS2-Ga2S3-AgCl chalcohalide glasses had been prepared by melt-quenching technique, and the glass-forming region was determined by XRD, which indicated that the maximum of dissolvable AgCl was up to 65 mol%. Thermal and optical properties of the glasses were studied by differential scanning calorimetry (DSC) and Visible-IR transmission, which showed that most of GeS2-Ga2S3-AgCl glasses had strong glass-forming ability and broad region of transmission (about 0.45-12.5 mu m). With the addition of AgCl, the glass transition temperature, Tg decreases distinctly, and the short-wavelength cut-off edge (lambda(vis)) of the glasses also shifts to the long wavelength gradually. However, the glass-forming ability of the glass has a complicated evolutional trend depended on the compositional change. In addition, the values of the Vickers microhardness, H (v) , which decrease with the addition of AgCl, are high enough for the practical applications. These excellent properties of GeS2-Ga2S3-AgCl glasses make them potentially applied in the optoelectronic field, such as all-optical switch, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comunicacion a congreso: Póster presentado en VIII Reunión Científica de Bioinorgánica – Bioburgos 2013 (Burgos, 7 al 10 de julio de 2013)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescent heteroleptic Cu-I complexes based on asymmetrical iminephosphine ligands exhibit improved electrochemical and photochemical stability as compared to the analogous complexes based on traditional diimine or diphosphine ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blends of low molecular weight triacetin (TAC) and oligomeric poly(1,3-butylene glycol adipate) (PBGA) were used as multiple plasticizers to lubricate poly(lactic acid) (PLA) in this study. The thermal and mechanical properties of plasticized polymers were investigated by means of dynamic mechanical analysis and differential scanning calorimetry. Atomic force microscopy (AFM) was used to analyze the morphologies of the blends. Multiple plasticizers were effective in lowering the glass transition temperature (T-g) and the melting temperature (T-m) of PLA. Moreover, crystallinity of PLA increased with increasing the con-tent of multiple plasticizers. Tensile strength of the blends decreased following the increasing of the plasticizers, but increased in elongation at break. AFM topographic images showed that the multiple plasticizers dispersed between interfibrillar regions. Moreover, the fibrillar crystallite formed the quasicrosslinkings, which is another cause for the increase in elongation at break.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. (C) 1997 John Wiley & Sons, Inc.