916 resultados para Tetrahydrofuran hydrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For almost 30 years. serious interest has been directed toward natural gas hydrate, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) submarine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas hydrate as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and phase-equilibria considerations diminish the energy resource potential of natural gas hydrate. The possible role of gas hydrate in global climate change has been often overstated. Although methane is a “greenhouse” gas in the atmosphere, much methane from dissociated gas hydrate may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas hydrate may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-hydrate dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas hydrate to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of a highly tunable porous structure and surface chemistry makes metal–organic framework (MOF) materials excellent candidates for artificial methane hydrate formation under mild temperature and pressure conditions (2 °C and 3–5 MPa). Experimental results using MOFs with a different pore structure and chemical nature (MIL-100 (Fe) and ZIF-8) clearly show that the water–framework interactions play a crucial role in defining the extent and nature of the gas hydrates formed. Whereas the hydrophobic MOF promotes methane hydrate formation with a high yield, the hydrophilic one does not. The formation of these methane hydrates on MOFs has been identified for the first time using inelastic neutron scattering (INS) and synchrotron X-ray powder diffraction (SXRPD). The results described in this work pave the way towards the design of new MOF structures able to promote artificial methane hydrate formation upon request (confined or non-confined) and under milder conditions than in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributions of halogens (Cl, Br and I) in interstitial waters from sediments containing methane hydrate and in water of the hydrate itself are presented. High concentrations of halogens do not occur in interstitial waters from sediments that contain gas hydrates. The main reason for their low concentrations is the poverty of organic matter in sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ODP Leg 204, which drilled at Hydrate Ridge, provides unique insights into the fluid regime of an accretionary complex and delineates specific sub-seafloor pathways for fluid transport. Compaction and dewatering due to smectite-illite transition increase with distance from the toe of the accretionary prism and bring up fluids from deep within the accretionary complex to sampled depths (<= 600 mbsf). These fluids have a distinctly non-radiogenic strontium isotope signature indicating reaction with the oceanic basement. Boron isotopes are also consistent with a deep fluid source that has been modified by desorption of heavy boron as clay minerals change from smectite to illite. One of three major horizons serves as conduit for the transport of mainly fluid. Our results enable us to evaluate fluid migration pathways that play important roles on massive gas hydrate accumulations and seepage of methane-rich fluids on southern Hydrate Ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments of Hydrate Ridge/Cascadia margin contain extensive amounts of gas hydrate. A total of 57 sediment samples including gas hydrate were preserved in liquid nitrogen and have been imaged using computerized tomography to visualize hydrate distribution and shape. The analysis gives evidence that gas hydrate in vein and veinlet structures is the predominant shape in the deeper gas hydrate stability zone with dipping angles from 30° to 90°(vertical).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrate Ridge off the coast of Oregon, USA, is a prime example for gas hydrate occurrences in active margin settings. It is part of the Cascadia Margin and was the focus of Ocean Drilling Program (ODP) Leg 204, which successfully recovered fluids from nine sites from the southern part of the ridge. Iodide concentrations in pore fluids associated with gas hydrates are strongly enhanced, by factors up to 5000 compared to seawater, which allows the use of this biophilic element as tracer for organic source regions. We applied the cosmogenic isotope 129I (T1/2=15.7 Ma) system to determine the age of the organic source formation responsible for the iodide enrichment. In all sites at ODP Leg 204, 129I/I ratios were found to decrease with depth to values around 250x10**-15, corresponding to minimum ages of 40 Ma, but in several sites, maxima in the 129I/I ratios point to the local addition of young iodide. The results indicate that a large amount of iodide was derived from deep accreted sediments of Eocene age, and that additional source regions provide iodide of Late Miocene age. The presence of old iodide in the pore waters suggests that fluid pathways are open to allow transport over large distances into the gas hydrate fields. The strong correlation between iodide and methane in hydrate fields coupled with the similarity in transport parameters in aqueous solutions suggests that a large fraction of methane in gas hydrates also has old sources and is transported into the present locations from source regions of Eocene age.