901 resultados para Techniques of data analysis
Resumo:
This study is concerned with the analysis of tear proteins, paying particular attention to the state of the tears (e.g. non-stimulated, reflex, closed), created during sampling, and to assess their interactions with hydrogel contact lenses. The work has involved the use of a variety of biochemical and immunological analytical techniques for the measurement of proteins, (a), in tears, (b), on the contact lens, and (c), in the eluate of extracted lenses. Although a diverse range of tear components may contribute to contact lens spoilation, proteins were of particular interest in this study because of their theoretical potential for producing immunological reactions. Although normal host proteins in their natural state are generally not treated as dangerous or non-self, those which undergo denaturation or suffer a conformational change may provoke an excessive and unnecessary immune response. A novel on-lens cell based assay has been developed and exploited in order to study the role of the ubiquitous cell adhesion glycoprotein, vitronectin, in tears and contact lens wear under various parameters. Vitronectin, whose levels are known to increase in the closed eye environment and shown here to increase during contact lens wear, is an important immunoregulatory protein and may be a prominent marker of inflammatory activity. Immunodiffusion assays were developed and optimised for use in tear analysis, and in a series of subsequent studies used for example in the measurement of albumin, lactoferrin, IgA and IgG. The immunodiffusion assays were then applied in the estimation of the closed eye environment; an environment which has been described as sustaining a state of sub-clinical inflammation. The role and presence of a lesser understood and investigated protein, kininogen, was also estimated, in particular, in relation to contact lens wear. Difficulties arise when attempting to extract proteins from the contact lens in order to examine the individual nature of the proteins involved. These problems were partly alleviated with the use of the on-lens cell assay and a UV spectrophotometry assay, which can analyse the lens surface and bulk respectively, the latter yielding only total protein values. Various lens extraction methods were investigated to remove protein from the lens and the most efficient was employed in the analysis of lens extracts. Counter immunoelectrophoresis, an immunodiffusion assay, was then applied to the analysis of albumin, lactoferrin, IgA and IgG in the resultant eluates.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This thesis describes the development of a complete data visualisation system for large tabular databases, such as those commonly found in a business environment. A state-of-the-art 'cyberspace cell' data visualisation technique was investigated and a powerful visualisation system using it was implemented. Although allowing databases to be explored and conclusions drawn, it had several drawbacks, the majority of which were due to the three-dimensional nature of the visualisation. A novel two-dimensional generic visualisation system, known as MADEN, was then developed and implemented, based upon a 2-D matrix of 'density plots'. MADEN allows an entire high-dimensional database to be visualised in one window, while permitting close analysis in 'enlargement' windows. Selections of records can be made and examined, and dependencies between fields can be investigated in detail. MADEN was used as a tool for investigating and assessing many data processing algorithms, firstly data-reducing (clustering) methods, then dimensionality-reducing techniques. These included a new 'directed' form of principal components analysis, several novel applications of artificial neural networks, and discriminant analysis techniques which illustrated how groups within a database can be separated. To illustrate the power of the system, MADEN was used to explore customer databases from two financial institutions, resulting in a number of discoveries which would be of interest to a marketing manager. Finally, the database of results from the 1992 UK Research Assessment Exercise was analysed. Using MADEN allowed both universities and disciplines to be graphically compared, and supplied some startling revelations, including empirical evidence of the 'Oxbridge factor'.
Resumo:
The concept of a task is fundamental to the discipline of ergonomics. Approaches to the analysis of tasks began in the early 1900's. These approaches have evolved and developed to the present day, when there is a vast array of methods available. Some of these methods are specific to particular contexts or applications, others more general. However, whilst many of these analyses allow tasks to be examined in detail, they do not act as tools to aid the design process or the designer. The present thesis examines the use of task analysis in a process control context, and in particular the use of task analysis to specify operator information and display requirements in such systems. The first part of the thesis examines the theoretical aspect of task analysis and presents a review of the methods, issues and concepts relating to task analysis. A review of over 80 methods of task analysis was carried out to form a basis for the development of a task analysis method to specify operator information requirements in industrial process control contexts. Of the methods reviewed Hierarchical Task Analysis was selected to provide such a basis and developed to meet the criteria outlined for such a method of task analysis. The second section outlines the practical application and evolution of the developed task analysis method. Four case studies were used to examine the method in an empirical context. The case studies represent a range of plant contexts and types, both complex and more simple, batch and continuous and high risk and low risk processes. The theoretical and empirical issues are drawn together and a method developed to provide a task analysis technique to specify operator information requirements and to provide the first stages of a tool to aid the design of VDU displays for process control.
Resumo:
Purpose - Measurements obtained from the right and left eye of a subject are often correlated whereas many statistical tests assume observations in a sample are independent. Hence, data collected from both eyes cannot be combined without taking this correlation into account. Current practice is reviewed with reference to articles published in three optometry journals, viz., Ophthalmic and Physiological Optics (OPO), Optometry and Vision Science (OVS), Clinical and Experimental Optometry (CEO) during the period 2009–2012. Recent findings - Of the 230 articles reviewed, 148/230 (64%) obtained data from one eye and 82/230 (36%) from both eyes. Of the 148 one-eye articles, the right eye, left eye, a randomly selected eye, the better eye, the worse or diseased eye, or the dominant eye were all used as selection criteria. Of the 82 two-eye articles, the analysis utilized data from: (1) one eye only rejecting data from the adjacent eye, (2) both eyes separately, (3) both eyes taking into account the correlation between eyes, or (4) both eyes using one eye as a treated or diseased eye, the other acting as a control. In a proportion of studies, data were combined from both eyes without correction. Summary - It is suggested that: (1) investigators should consider whether it is advantageous to collect data from both eyes, (2) if one eye is studied and both are eligible, then it should be chosen at random, and (3) two-eye data can be analysed incorporating eyes as a ‘within subjects’ factor.
Resumo:
A recent novel approach to the visualisation and analysis of datasets, and one which is particularly applicable to those of a high dimension, is discussed in the context of real applications. A feed-forward neural network is utilised to effect a topographic, structure-preserving, dimension-reducing transformation of the data, with an additional facility to incorporate different degrees of associated subjective information. The properties of this transformation are illustrated on synthetic and real datasets, including the 1992 UK Research Assessment Exercise for funding in higher education. The method is compared and contrasted to established techniques for feature extraction, and related to topographic mappings, the Sammon projection and the statistical field of multidimensional scaling.
Resumo:
DUE TO INCOMPLETE PAPERWORK, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Тихомир Трифонов, Цветанка Георгиева-Трифонова - В настоящата статия е представена системата bgBell/OLAP за складиране и онлайн аналитична обработка на данни за уникални български камбани. Реализираната система предоставя възможност за извеждане на обобщени справки и анализиране на различни характеристики на камбаните, за да се извлече предварително неизвестна и потенциално полезна информация.
Resumo:
2000 Mathematics Subject Classification: 62P10, 92C40
Resumo:
Non-parametric methods for efficiency evaluation were designed to analyse industries comprising multi-input multi-output producers and lacking data on market prices. Education is a typical example. In this chapter, we review applications of DEA in secondary and tertiary education, focusing on the opportunities that this offers for benchmarking at institutional level. At secondary level, we investigate also the disaggregation of efficiency measures into pupil-level and school-level effects. For higher education, while many analyses concern overall institutional efficiency, we examine also studies that take a more disaggregated approach, centred either around the performance of specific functional areas or that of individual employees.
Resumo:
A tanulmány arra a feltevésre épül, hogy minél erősebb a bizalomra méltóság szintje egy adott üzleti kapcsolatban, annál inkább igaz, hogy nagy kockázatú tevékenységek mennek végbe benne. Ilyen esetekben a bizalomra méltóság a kapcsolatban zajló események, cselekvések irányítási eszközévé válik, és az üzleti kapcsolatban megjelenik a cselekvési hajlandóságként értelmezett bizalom. A tanulmány felhívja a figyelmet a bizalom és a bizalomra méltóság fogalmai közötti különbségre, szisztematikus különválasztásuk fontosságára. Bemutatja az úgynevezett diadikus adatelemzés gazdálkodástudományi alkalmazását. Empirikus eredményei is igazolják, hogy ezzel a módszerrel az üzleti kapcsolatok társas jellemzőinek (köztük a bizalomnak) és a közöttük lévő kapcsolatoknak mélyebb elemzésére nyílik lehetőség. ____ The paper rests on the behavioral interpretation of trust, making a clear distinction between trustworthiness (honesty) and trust interpreted as willingness to engage in risky situations with specific partners. The hypothesis tested is that in a business relation marked by high levels of trustworthiness as perceived by the opposite parties, willingness to be involved in risky situations is higher than it is in relations where actors do not believe their partners to be highly trustworthy. Testing this hypothesis clearly calls for dyadic operationalization, measurement, and analysis. The authors present the first economic application of a newly developed statistical technique called dyadic data analysis, which has already been applied in social psychology. It clearly overcomes the problem of single-ended research in business relations analysis and allows a deeper understanding of any dyadic phenomenon, including trust/trustworthiness as a governance mechanism.
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.