959 resultados para Techniques: Image Processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To evaluate whether parametric imaging with contrast material-enhanced ultrasonography (US) is superior to visual assessment for the differential diagnosis of focal liver lesions (FLLs). Materials and Methods: This study had institutional review board approval, and verbal patient informed consent was obtained. Between August 2005 and October 2008, 146 FLLs in 145 patients (63 women, 82 men; mean age, 62.5 years; age range, 22-89 years) were imaged with real-time low-mechanical-index contrast-enhanced US after a bolus injection of 2.4 mL of a second-generation contrast agent. Clips showing contrast agent uptake kinetics (including arterial, portal, and late phases) were recorded and subsequently analyzed off-line with dedicated image processing software. Analysis of the dynamic vascular patterns (DVPs) of lesions with respect to adjacent parenchyma allowed mapping DVP signatures on a single parametric image. Cine loops of contrast-enhanced US and results from parametric imaging of DVP were assessed separately by three independent off-site readers who classified each lesion as benign, malignant, or indeterminate. Sensitivity, specificity, accuracy, and positive and negative predictive values were calculated for both techniques. Interobserver agreement (κ statistics) was determined. Results: Sensitivities for visual interpretation of cine loops for the three readers were 85.0%, 77.9%, and 87.6%, which improved significantly to 96.5%, 97.3%, and 96.5% for parametric imaging, respectively (P < .05, McNemar test), while retaining high specificity (90.9% for all three readers). Accuracy scores of parametric imaging were higher than those of conventional contrast-enhanced US for all three readers (P < .001, McNemar test). Interobserver agreement increased with DVP parametric imaging compared with conventional contrast-enhanced US (change of κ from 0.54 to 0.99). Conclusion: Parametric imaging of DVP improves diagnostic performance of contrast-enhanced US in the differentiation between malignant and benign FLLs; it also provides excellent interobserver agreement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A common problem in video surveys in very shallow waters is the presence of strong light fluctuations, due to sun light refraction. Refracted sunlight casts fast moving patterns, which can significantly degrade the quality of the acquired data. Motivated by the growing need to improve the quality of shallow water imagery, we propose a method to remove sunlight patterns in video sequences. The method exploits the fact that video sequences allow several observations of the same area of the sea floor, over time. It is based on computing the image difference between a given reference frame and the temporal median of a registered set of neighboring images. A key observation is that this difference will have two components with separable spectral content. One is related to the illumination field (lower spatial frequencies) and the other to the registration error (higher frequencies). The illumination field, recovered by lowpass filtering, is used to correct the reference image. In addition to removing the sunflickering patterns, an important advantage of the approach is the ability to preserve the sharpness in corrected image, even in the presence of registration inaccuracies. The effectiveness of the method is illustrated in image sets acquired under strong camera motion containing non-rigid benthic structures. The results testify the good performance and generality of the approach

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sophisticated magnetic resonance tagging techniques provide powerful tools for the non-invasive assessment of the local heartwall motion towards a deeper fundamental understanding of local heart function. For the extraction of motion data from the time series of magnetic resonance tagged images and for the visualization of the local heartwall motion a new image analysis procedure has been developed. New parameters have been derived which allows quantification of the motion patterns and are highly sensitive to any changes in these patterns. The new procedure has been applied for heart motion analysis in healthy volunteers and in patient collectives with different heart diseases. The achieved results are summarized and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk), and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve), at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 %) revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm). Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm²) as well as in CXve (-4231 to 612.1 mm²). However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are closer to the results obtained with the reference method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In three-dimensional (3D) coronary magnetic resonance angiography (MRA), the in-flow contrast between the coronary blood and the surrounding myocardium is attenuated as compared to thin-slab two-dimensional (2D) techniques. The application of a gadolinium (Gd)-based intravascular contrast agent may provide an additional source of signal and contrast by reducing T(1blood) and supporting the visualization of more distal or branching segments of the coronary arterial tree. In six healthy adults, the left coronary artery (LCA) system was imaged pre- and postcontrast with a 0.075-mmol/kg bodyweight dose of the intravascular contrast agent B-22956. For imaging, an optimized free-breathing, navigator-gated and -corrected 3D inversion recovery (IR) sequence was used. For comparison, state-of-the-art baseline 3D coronary MRA with T(2) preparation for non-exogenous contrast enhancement was acquired. The combination of IR 3D coronary MRA, sophisticated navigator technology, and B-22956 allowed for an extensive visualization of the LCA system. Postcontrast, a significant increase in both the signal-to-noise ratio (SNR; 46%, P < 0.05) and contrast-to-noise ratio (CNR; 160%, P < 0.01) was observed, while vessel sharpness of the left anterior descending (LAD) artery and the left coronary circumflex (LCX) were improved by 20% (P < 0.05) and 18% (P < 0.05), respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For radiotherapy treatment planning of retinoblastoma inchildhood, Computed Tomography (CT) represents thestandard method for tumor volume delineation, despitesome inherent limitations. CT scan is very useful inproviding information on physical density for dosecalculation and morphological volumetric information butpresents a low sensitivity in assessing the tumorviability. On the other hand, 3D ultrasound (US) allows ahigh accurate definition of the tumor volume thanks toits high spatial resolution but it is not currentlyintegrated in the treatment planning but used only fordiagnosis and follow-up. Our ultimate goal is anautomatic segmentation of gross tumor volume (GTV) in the3D US, the segmentation of the organs at risk (OAR) inthe CT and the registration of both. In this paper, wepresent some preliminary results in this direction. Wepresent 3D active contour-based segmentation of the eyeball and the lens in CT images; the presented approachincorporates the prior knowledge of the anatomy by usinga 3D geometrical eye model. The automated segmentationresults are validated by comparing with manualsegmentations. Then, for the fusion of 3D CT and USimages, we present two approaches: (i) landmark-basedtransformation, and (ii) object-based transformation thatmakes use of eye ball contour information on CT and USimages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A discussion is presented of daytime sky imaging and techniques that may be applied to the analysis of full-color sky images to infer cloud macrophysical properties. Descriptions of two different types of skyimaging systems developed by the authors are presented, one of which has been developed into a commercially available instrument. Retrievals of fractional sky cover from automated processing methods are compared to human retrievals, both from direct observations and visual analyses of sky images. Although some uncertainty exists in fractional sky cover retrievals from sky images, this uncertainty is no greater than that attached to human observations for the commercially available sky-imager retrievals. Thus, the application of automatic digital image processing techniques on sky images is a useful method to complement, or even replace, traditional human observations of sky cover and, potentially, cloud type. Additionally, the possibilities for inferring other cloud parameters such as cloud brokenness and solar obstruction further enhance the usefulness of sky imagers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To compare volume-targeted and whole-heart coronary magnetic resonance angiography (MRA) after the administration of an intravascular contrast agent. MATERIALS AND METHODS: Six healthy adult subjects underwent a navigator-gated and -corrected (NAV) free breathing volume-targeted cardiac-triggered inversion recovery (IR) 3D steady-state free precession (SSFP) coronary MRA sequence (t-CMRA) (spatial resolution = 1 x 1 x 3 mm(3)) and high spatial resolution IR 3D SSFP whole-heart coronary MRA (WH-CMRA) (spatial resolution = 1 x 1 x 2 mm(3)) after the administration of an intravascular contrast agent B-22956. Subjective and objective image quality parameters including maximal visible vessel length, vessel sharpness, and visibility of coronary side branches were evaluated for both t-CMRA and WH-CMRA. RESULTS: No significant differences (P = NS) in image quality were observed between contrast-enhanced t-CMRA and WH-CMRA. However, using an intravascular contrast agent, significantly longer vessel segments were measured on WH-CMRA vs. t-CMRA (right coronary artery [RCA] 13.5 +/- 0.7 cm vs. 12.5 +/- 0.2 cm; P < 0.05; and left circumflex coronary artery [LCX] 11.9 +/- 2.2 cm vs. 6.9 +/- 2.4 cm; P < 0.05). Significantly more side branches (13.3 +/- 1.2 vs. 8.7 +/- 1.2; P < 0.05) were visible for the left anterior descending coronary artery (LAD) on WH-CMRA vs. t-CMRA. Scanning time and navigator efficiency were similar for both techniques (t-CMRA: 6.05 min; 49% vs. WH-CMRA: 5.51 min; 54%, both P = NS). CONCLUSION: Both WH-CMRA and t-CMRA using SSFP are useful techniques for coronary MRA after the injection of an intravascular blood-pool agent. However, the vessel conspicuity for high spatial resolution WH-CMRA is not inferior to t-CMRA, while visible vessel length and the number of visible smaller-diameter vessels and side-branches are improved.