816 resultados para Tanner-Whitehouse
Resumo:
This paper presents the results of recent palaeoentomological research carried out in the Humberhead Levels, South Yorkshire, UK, including the discovery of fossils of five species of beetle previously unknown in the British Isles. The significance of these and other Urwaldrelikt species is discussed in relation to the fragmentation of forest habitats, particularly those associated with Pinus sylvestris L. The Holocene history of this tree and its associated taxa is examined. The importance of fire habitats and the dependence of some pinicolous taxa on these habitats suggests that the decline of fire ecosystems may have had some impact on the changing biogeography of some species.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Chironomid-inferred Late-Glacial Summer Air Temperatures From Lough Nadourcan, Co. Donegal, Ireland.
Resumo:
Western Ireland, located adjacent to the North Atlantic, and with a strongly oceanic climate, is potentially sensitive to rapid and extreme climate change. We present the first high-resolution chironomid-inferred mean July temperature reconstruction for Ireland, spanning the late-glacial and early Holocene (LGIT, 15-10 ka BP). The reconstruction suggests an initial rapid warming followed by a short cool phase early in the interstadial. During the interstadial there are oscillations in the inferred temperatures which may relate to Greenland Interstadial events GI-1a-e. The temperature decrease into the stadial occurs in two stages. This two-stage drop can also be seen in other late-glacial chironomid-inferred temperature records from the British Isles. A stepped rise in temperatures into the Holocene, consistent with present-day temperatures in Donegal, is inferred. The results show strong similarities with previously published LGIT chironomid-inferred temperature reconstructions, and with the NGRIP oxygen-isotope curve, which indicates that the oscillations observed in the NGRIP record are of hemispherical significance. The results also highlight the influence of the North Atlantic on the Irish climate throughout the LGIT.