938 resultados para TUTOR INTELIGENTE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The increased demand for using the Industrial, Scientific and Medical (ISM) unlicensed frequency spectrum has caused interference problems and lack of resource availability for wireless networks. Cognitive radio (CR) have emerged as an alternative to reduce interference and intelligently use the spectrum. Several protocols were proposed aiming to mitigate these problems, but most have not been implemented in real devices. This work presents an architecture for Intelligent Sensing for Cognitive Radios (ISCRa), and a spectrum decision model (SDM) based on Artificial Neural Networks (ANN), which uses as input a database with local spectrum behavior and a database with primary users information. For comparison, a spectrum decision model based on AHP, which employs advanced techniques in its spectrum decision method was implemented. Another spectrum decision model that considers only a physical parameter for channel classification was also implemented. Spectrum decision models evaluated, as well as ISCRa's architecture were developed in GNU-Radio framework and implemented on real nodes. Evaluation of SDMs considered metrics of: delivery rate, latency (Round Trip Time - RTT) and handoff. Experiments on real nodes showed that ISCRa architecture with ANN based SDM increased packet delivery rate and presented fewer frequency variation (handoff) while maintaining latency. Considering higher bandwidth as application's Quality of Service requirement, ANN-SDM obtained the best results when compared to other SDM for cognitive radio networks (CRN).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Há muitos anos, técnicas de Computação Evolucionária vem sendo aplicadas com sucesso na solução dos mais variados tipos de problemas de otimização. Na constante procura pelo ótimo global e por uma melhor exploração da superfície de busca, as escolhas para ajustar estes métodos podem ser exponencialmente complexas e requerem uma grande quantidade de intervenção humana. Estes modelos tradicionais darwinianos apóiam-se fortemente em aleatoriedade e escolhas heurísticas que se mantém fixas durante toda a execução, sem que acompanhem a variabilidade dos indivíduos e as eventuais mudanças necessárias. Dadas estas questões, o trabalho introduz a combinação de aspectos da Teoria do Design Inteligente a uma abordagem hibrida de algoritmo evolucionário, através da implementação de um agente inteligente o qual, utilizando lógica fuzzy, monitora e controla dinamicamente a população e seis parâmetros definidos de uma dada execução, ajustando-os para cada situação encontrada durante a busca. Na avaliação das proposições foi construído um protótipo sobre a implementação de um algoritmo genético para o problema do caixeiro viajante simétrico aplicado ao cenário de distância por estradas entre as capitais brasileiras, o que permitiu realizar 580 testes, simulações e comparações entre diferentes configurações apresentadas e resultados de outras técnicas. A intervenção inteligente entrega resultados que, com sucesso em muitos aspectos, superam as implementações tradicionais e abrem um vasto espaço para novas pesquisas e estudos nos aqui chamados: “Algoritmos Evolucionários Híbridos Auto-Adaptáveis”, ou mesmo, “Algoritmos Evolucionários Não-Darwinianos”.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
A identificação de fácies em um poço não testemunhado é um dos problemas clássicos da avaliação de formação. Neste trabalho este problema é tratado em dois passos, no primeiro produz-se a codificação da informação geológica ou da descrição das fácies atravessadas em um poço testemunhado em termos das suas propriedades físicas registradas nos perfis geofísicos e traduzidas pelos parâmetros L e K, que são obtidos a partir dos perfis de porosidade (densidade, sônico e porosidade neutrônica) e pela argilosidade (Vsh) calculada pelo perfil de raio gama natural. Estes três parâmetros são convenientemente representados na forma do Gráfico Vsh-L-K. No segundo passo é realizada a interpretação computacional do Gráfico Vsh-L-K por um algoritmo inteligente construído com base na rede neural competitiva angular generalizada, que é especializada na classificação de padrões angulares ou agrupamento de pontos no espaço n-dimensional que possuem uma envoltória aproximadamente elipsoidal. Os parâmetros operacionais do algoritmo inteligente, como a arquitetura da rede neural e pesos sinápticos são obtidos em um Gráfico Vsh-L-K, construído e interpretado com as informações de um poço testemunhado. Assim, a aplicação deste algoritmo inteligente é capaz de identificar e classificar as camadas presentes em um poço não testemunhado, em termos das fácies identificadas no poço testemunhado ou em termos do mineral principal, quando ausentes no poço testemunhado. Esta metodologia é apresentada com dados sintéticos e com perfis de poços testemunhados do Campo de Namorado, na Bacia de Campos, localizada na plataforma continental do Rio de Janeiro, Brasil.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This final paper is a reflection on mobile service of urgency by raising the main difficulties encountered by organizations, and seeking innovative solutions through new technological features like smartphones, tablets application and cloud computing to develop a scalable system and globalized, based on geolocation that is able to overcome this difficulty being accessible to the whole population