978 resultados para TSETSE FLIES
Resumo:
In addition to feeding on carrion tissues and fluids, social wasps can also prey on immature and adult carrion flies, thereby reducing their populations and retarding the decomposition process of carcasses. In this study, we report on the occurrence and behavior of social wasps attracted to vertebrate carrion. The collections were made monthly from September 2006 to October 2007 in three environments (rural, urban, and forest) in six municipalities of southeast Brazil, using baited bottle traps. We collected Agelaia pallipes (Olivier, 1791) (n = 143), Agelaia vicina (Saussure, 1854) (n = 106), Agelaia multipicta (Haliday, 1836) (n = 18), and Polybia paulista Ihering, 1896 (n = 3). The wasps were observed feeding directly on the baits and preying on adult insects collected in the traps. Bait and habitat associations, temporal variability of social wasps, and possible forensic implications of their actions are discussed.
Resumo:
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential Pupal stage duration in C capitata was influenced differently for males and females In females, only soil type affected pupal stage duration, which was longer in a clay soil In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil As allude potential decreased, duration of the pupal stage of C capitata males increased, regardless of soil type C capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils The emergence of D longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil Always, the number of emerged adults was higher at higher moisture conditions C capitata and D longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
Resumo:
Four new species of Anastrepha Schiner were collected in McPhail-type traps hung in trees in a natural reserve and in commercial papaya orchards in Linhares, Espirito Santo state, Brazil. They are described and named herein as follows: Anastrepha atlantica n. sp., Anastrepha glochin n. sp., Anastrepha linharensis n. sp. and Anastrepha martinsi n. sp. Only the latter was collected in traps hung in papaya orchards. The classification of these species in species groups of Anastrepha is also discussed.
Resumo:
On Mho obesa F. (Diptera: Syrphidae) is usually neglected in forensic entomology, although adults are rather frequent on vertebrate carrion. In this study, conducted in southeastern Brazil in 2008, we used two pig carcasses, one killed by cocaine overdose and the other by shooting, to evaluate mainly the possible influences of the type of death on the larval development of O. obesa in the pig remains. We recorded the breeding of 218 adult specimens of this syrphid fly from the carcass killed by shooting, and none from the carcass killed by cocaine. These observations may open a new perspective for the use of O. obesa in forensic studies, considering its breeding preferences and its complete development on vertebrate carrion.
Resumo:
Glow-worms are the larvae of a fly from the family Keroplatidae. Their closest relatives are the “fungus flies” that seek out mushrooms for their larvae to consume. Glow-worms have gone out on an evolutionary limb, albeit a successful one. They have lost their association with fungi and have instead become carnivorous. The unique feature of glow-worms is their ability to bioluminesce—to produce light.
Resumo:
Wolbachia are maternally inherited intracellular α-Proteobacteria found in numerous arthropod and filarial nematode species [1, 2 and 3]. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host [4 and 5]. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males [1 and 2]. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks [6, 7 and 8]. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel [9], we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field [6].
Resumo:
Drosophila simulans strains infected with three different Wolbachia strains were generated by experimental injection of a third symbiont into a naturally double-infected strain. This transfer led to a substantial increase in total Wolbachia density in the host strain. Each of the three symbionts was stably transmitted in the presence of the other two. Triple-infected males were incompatible with double-infected females. No evidence was obtained for interference between modification effects of the different Wolbachia strains in males. Some incompatibility was observed between triple-infected males and females. However, this incompatibility reaction is not a specific property of triple-infected flies, because it was also observed in double-infected strains.
Resumo:
Intracellular Wolbachia infections are extremely common in arthropods and exert profound control over the reproductive biology of the host. However, very little is known about the underlying molecular mechanisms which mediate these interactions with the host. We examined protein synthesis by Wolbachia in a Drosophila host in vivo by selective metabolic labelling of prokaryotic proteins and subsequent analysis by 1D and 2D gel electrophoresis. Using this method we could identify the major proteins synthesized by Wolbachia in ovaries and testes of flies. Of these proteins the most abundant was of low molecular weight and showed size variation between Wolbachia strains which correlated with the reproductive phenotype they generated in flies. Using the gel systems we employed it was not possible to identify any proteins of Wolbachia origin in the mature sperm cells of infected flies.
Resumo:
The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.
Resumo:
Inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods and have been implicated in the expression of parthenogenesis, feminization and cytoplasmic incompatibility phenomena in their respective hosts. Here we use purified Wolbachia from the Asian tiger mosquito, Aedes albopictus, to replace the natural infection of Drosophila simulans by means of embryonic microinjection techniques. The transferred Wolbachia infection behaves like a natural Drosophila infection with regard to its inheritance, cytoskeleton interactions and ability to induce incompatibility when crossed with uninfected flies. The transinfected flies are bidirectionally incompatible with all other naturally infected strains of Drosophila simulans, however, and as such represent a unique crossing type. The successful transfer of this symbiont between distantly related hosts suggests that it may be possible to introduce this agent experimentally into arthropod species of medical and agricultural importance in order to manipulate natural populations genetically.
Resumo:
We wish to alert people studying early embryonic development in the fruit-fly Drosophila melanogaster of the possible presence of commensal parasites in some stocks.
Resumo:
A likely pathway to the sex pheromones of Bactrocera oleae (olive fruit-fly) is presented, based mainly on feeding experiments with deuterium labelled precursors.
Resumo:
Objective To determine the efficacy of zeta-cypermethrin in controlling buffalo fly (Haematobia irritans exigua). Design Five field trials in northern and central Queensland. Procedure Zeta-cypermethrin pour-on at 2.5 mg/kg, spray at 62.5 ppm, deltamethrin pour-on and pour-on vehicle were applied to groups of 20 cattle. Buffalo fly counts were conducted three times before treatment and 3, 7, 14, 21, 28 and 35 days after treatment. Results In central Queensland where synthetic pyrethroid resistance in buffalo fly populations was rare, 2.5 mg/kg of zeta-cypermethrin pour-on gave good control of buffalo fly for 4 weeks and was better than a deltamethrin product. A zeta-cypermethrin spray used at 62.5 ppm gave 14 days control. In far-north Queensland where resistance to synthetic pyrethroids and heavy rain was common, the maximum period of efficacy of zeta-cypermethrin pour-on was reduced to 2 weeks. Conclusion In areas where there is low resistance to synthetic pyrethroids among buffalo flies, zeta-cypermethrin pour-on can be expected to give good control for 4 weeks.
Resumo:
The demonstration that both oxygen atoms of 1,7-dioxaspiro[5.5] undecane (1), the sex-pheromone of the female olive fly, originate from dioxygen, strongly implicates monooxygenase mediated processes in assembly of (1), and reveals unexpected complexity in the formation of its nine-carbon precursor.
Resumo:
The reproductive biology and pollination mechanisms of Govenia utriculata (Sw.) Lindl. were studied in a mesophytic semideciduous forest at Serra do Japi, south-eastern Brazil. The floral visitors and pollination mechanisms were recorded, and experimental pollinations were carried out to determine the breeding system of this species. Populations of G. utriculata growing at Serra do Japi are exclusively visited and pollinated by two species of hoverflies in the genus Salpingogaster (Diptera: Syrphidae) that are attracted by deceit to the flowers of this orchid species. The lip apex and the column base present small brownish and yellow to orange spots that mimic pollen clusters. Govenia utriculata is self-compatible, but pollinator dependent. Natural fruit set was low (10%), but similar to that of other non-obligatorily autogamous sympatric orchid species that occur at Serra do Japi and of other fly-pollinated orchid species pollinated through deceptive mechanisms.