263 resultados para TRIACYLGLYCEROL
Resumo:
Abstract Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.
Resumo:
We identified different lipemic and metabolic responses after the ingestion of a standardized meal by healthy adults and related them to atherosclerotic markers. Samples from 60 normolipidemic adults were collected before and after a liquid meal (40 g fat/m² body surface) at 0, 2, 4, 6, and 8 h for measurements of lipids, free fatty acids (FFA), insulin, cholesteryl ester transfer protein (CETP), autoantibodies to epitopes of oxidized LDL (oxLDL Ab), lipolytic activities, and apolipoprotein E polymorphism. Mean carotid intima-media thickness (cIMT) was determined by Doppler ultrasound. The volunteers were classified into early (N = 39) and late (N = 31) triacylglycerol (TAG) responders to the test meal. Late responders showed lower HDL cholesterol concentration at fasting and in the TAG peak, lower insulin and higher FFA concentrations compared to early responders. Multivariate regression analyses showed that mean cIMT was associated with gender (male) and age in early responders and by cholesterol levels at the 6th hour in late responders. oxLDL Ab were explained by lipoprotein lipase and negatively by hepatic lipase and oxLDL Ab (fasting period) by CETP (negative) and FFA (positive). This study is the first to identify a postalimentary insulin resistance state, combined with a reduced CETP response exclusively among late responders, and the identification of the regulators of postalimentary atherogenicity. Further research is required to determine the metabolic mechanisms described in the different postalimentary phenotypes observed in this study, as well as in different pathological states, as currently investigated in our laboratory.
Resumo:
We investigated whether palmitoleic acid, a fatty acid that enhances whole body glucose disposal and suppresses hepatic steatosis, modulates triacylglycerol (TAG) metabolism in adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from wild-type or PPARα-deficient mice treated with 16:1n7 (300 mg•kg(-1)•day(-1)) or oleic acid (18:1n9, 300 mg•kg(-1)•day(-1)) by gavage for 10 days were evaluated for lipolysis, TAG, and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and protein content of ATGL and pSer(660)-HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of PPARα binding to DNA. In contrast to lipolysis, both 16:1n7 and 16:0 increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild-type but not PPARα-deficient mice with 16:1n7 increased primary adipocyte basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild-type and PPARα-deficient mice. In conclusion, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
AIMS/HYPOTHESIS: Retinol-binding protein 4 (RBP4) has recently been reported to be associated with insulin resistance and the metabolic syndrome. This study tested the hypothesis that RBP4 is a marker of insulin resistance and the metabolic syndrome in patients with type 2 diabetes or coronary artery disease (CAD) or in non-diabetic control subjects without CAD. METHODS: Serum RBP4 was measured in 365 men (126 with type 2 diabetes, 143 with CAD and 96 control subjects) and correlated with the homeostasis model assessment of insulin resistance index (HOMA-IR), components of the metabolic syndrome and lipoprotein metabolism. RBP4 was detected by ELISA and validated by quantitative Western blotting. RESULTS: RBP4 concentrations detected by ELISA were shown to be strongly associated with the results gained in quantitative Western blots. There were no associations of RBP4 with HOMA-IR or HbA(1c) in any of the groups studied. In patients with type 2 diabetes there were significant positive correlations of RBP4 with total cholesterol, LDL-cholesterol, VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity. In patients with CAD, there were significant associations of RBP4 with VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity, while non-diabetic control subjects without CAD showed positive correlations of RBP4 with VLDL-cholesterol and plasma triacylglycerol. CONCLUSIONS/INTERPRETATION: RBP4 does not seem to be a valuable marker for identification of the metabolic syndrome or insulin resistance in male patients with type 2 diabetes or CAD. Independent associations of RBP4 with pro-atherogenic lipoproteins and enzymes of lipoprotein metabolism indicate a possible role of RBP4 in lipid metabolism.
Resumo:
Plasma low-density lipoprotein (LDL) levels are positively correlated with the incidence of coronary artery disease. In the circulation, the plasma LDL clearance is mainly achieved by the uptake via LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a newly discovered gene, playing an important role in LDL metabolism. Gain-of-function mutations of PCSK9 lead to hypercholesterolemia and loss-of-function mutations of PCSK9 are associated with decrease of LDL cholesterol. The effects of PCSK9 on cholesterol levels are the consequence of a strong interaction between the catalytic domain of PCSK9 and epidermal growth factor-like repeat A (EGF-A) domain of LDLR on the cell surface of hepatocytes. This PCSK9/LDLR complex enters the cell via endocytosis, where both PCSK9 and LDLR are removed via the lysosome pathway, resulting in decreased levels of LDLR and accumulation of LDL in the plasma. However, whether this is the exclusive function of PCSK9 on LDL metabolism was challenged by us; we observed PCSK9 interacted with apolipoprotein B (apoB) and increased apoB production, irrespective of the LDLR. ApoB is the primary structure protein of LDL particle and it also serves as the ligand for the LDL receptor. There is ample evidence showing that the levels of apoB are a better indicator for heart disease than either total cholesterol or LDL cholesterol levels. We used a second-generation adenoviral vector to overexpress PCSK9 (Ad-PCSK9) in wild-type C57BL/6 and LDLR deficient mice (Ldlr-/- and Ldlr-/-Apobec1-/-). Our study revealed that overexpression of PCSK9 promoted the production and secretion of apoB in the form of very-low density lipoprotein (VLDL), which is the precursor of LDL, in the 3 mouse models studied (C57BL/6J, Ldlr-/-, and Ldlr-/-Apobec1-/-). The increased apoB production in mice was regulated at post-transcriptional levels, since there was no difference in apoB mRNA levels between mice treated with Ad-PCSK9 and control vector Ad-Null. By using pulse-chase experiment on primary hepatocytes, we showed that overexpression of PCSK9 increased the secretion of apoB, independent of LDLR. In the circulation, we showed that PCSK9 was associated with LDL particles. By using 3 different protein–protein interaction assays of co-immunoprecipitation, mammalian two-hybrid system, and in situ proximity ligation assay, we demonstrated a direct protein–protein interaction between PCSK9 and apoB. The impact of this interaction inhibited the physiological removal process of apoB via autophagosome/lysosome pathway in an LDLR-independent fashion, resulting in increased production and secretion of apoB-containing lipoproteins. The significance of this process was shown in the Pcsk9 knockout mice in the background of Ldlr-/-Apobec1-/- mice (triple knockout mice); in the absence of Pcsk9 (triple knockout mice) the levels of cholesterol, triacylglycerol, and apoB decreased significantly in comparison to that of Ldlr-/-Apobec1-/- mice. Taken together, our study demonstrated a direct intracellular interaction of PCSK9 with apoB, resulting in the inhibition of apoB degradation via the autophagosome/lysosome pathway independent of LDLR. This discovery provides a new concept of the importance of PCSK9 and suggests new approaches for the therapeutic intervention of hyperlipidemia.
Resumo:
To determine the mechanism of the cardiac dilatation and reduced contractility of obese Zucker Diabetic Fatty rats, myocardial triacylglycerol (TG) was assayed chemically and morphologically. TG was high because of underexpression of fatty acid oxidative enzymes and their transcription factor, peroxisome proliferator-activated receptor-α. Levels of ceramide, a mediator of apoptosis, were 2–3 times those of controls and inducible nitric oxide synthase levels were 4 times greater than normal. Myocardial DNA laddering, an index of apoptosis, reached 20 times the normal level. Troglitazone therapy lowered myocardial TG and ceramide and completely prevented DNA laddering and loss of cardiac function. In this paper, we conclude that cardiac dysfunction in obesity is caused by lipoapoptosis and is prevented by reducing cardiac lipids.
Resumo:
Overaccumulation of lipids in nonadipose tissues of obese rodents may lead to lipotoxic complications such as diabetes. To assess the pathogenic role of the lipogenic transcription factor, sterol regulatory element binding protein 1 (SREBP-1), we measured its mRNA in liver and islets of obese, leptin-unresponsive fa/fa Zucker diabetic fatty rats. Hepatic SREBP-1 mRNA was 2.4 times higher than in lean +/+ controls, primarily because of increased SREBP-1c expression. mRNA of lipogenic enzymes ranged from 2.4- to 4.6-fold higher than lean controls, and triacylglycerol (TG) content was 5.4 times higher. In pancreatic islets of fa/fa rats, SREBP-1c was 3.4 times higher than in lean +/+ Zucker diabetic fatty rats. The increase of SREBP-1 in liver and islets of untreated fa/fa rats was blocked by 6 weeks of troglitazone therapy, and the diabetic phenotype was prevented. Up-regulation of SREBP-1 also occurred in livers of Sprague–Dawley rats with diet-induced obesity. Hyperleptinemia, induced in lean +/+ rats by adenovirus gene transfer, lowered hepatic SREBP-1c by 74% and the lipogenic enzymes from 35 to 59%. In conclusion, overnutrition increases and adenovirus-induced hyperleptinemia decreases SREBP-1c expression in liver and islets. SREBP-1 overexpression, which is prevented by troglitazone, may play a role in the ectopic lipogenesis and lipotoxicity complicating obesity in Zucker diabetic fatty rats.
Resumo:
Perilipin coats the lipid droplets of adipocytes and is thought to have a role in regulating triacylglycerol hydrolysis. To study the role of perilipin in vivo, we have created a perilipin knockout mouse. Perilipin null (peri−/−) and wild-type (peri+/+) mice consume equal amounts of food, but the adipose tissue mass in the null animals is reduced to ≈30% of that in wild-type animals. Isolated adipocytes of perilipin null mice exhibit elevated basal lipolysis because of the loss of the protective function of perilipin. They also exhibit dramatically attenuated stimulated lipolytic activity, indicating that perilipin is required for maximal lipolytic activity. Plasma leptin concentrations in null animals were greater than expected for the reduced adipose mass. The peri−/− animals have a greater lean body mass and increased metabolic rate but they also show an increased tendency to develop glucose intolerance and peripheral insulin resistance. When fed a high-fat diet, the perilipin null animals are resistant to diet-induced obesity but not to glucose intolerance. The data reveal a major role for perilipin in adipose lipid metabolism and suggest perilipin as a potential target for attacking problems associated with obesity.
Resumo:
Biosynthesis of sucrose from triacylglycerol requires the bypass of the CO2-evolving reactions of the tricarboxylic acid (TCA) cycle. The regulation of the TCA cycle bypass during lipid mobilization was examined. Lipid mobilization in Brassica napus was initiated shortly after imbibition of the seed and proceeded until 2 d postimbibition, as measured by in vivo [1-14C]acetate feeding to whole seedlings. The activity of NAD+-isocitrate dehydrogenase (a decarboxylative enzyme) was not detected until 2 d postimbibition. RNA-blot analysis of B. napus seedlings demonstrated that the mRNA for NAD+-isocitrate dehydrogenase was present in dry seeds and that its level increased through the 4 d of the experiment. This suggested that NAD+-isocitrate dehydrogenase activity was regulated by posttranscriptional mechanisms during early seedling development but was controlled by mRNA level after the 2nd or 3rd d. The activity of fumarase (a component of the nonbypassed section of the TCA cycle) was low but detectable in B. napus seedlings at 12 h postimbibition, coincident with germination, and increased for the next 4 d. RNA-blot analysis suggested that fumarase activity was regulated primarily by the level of its mRNA during germination and early seedling development. It is concluded that posttranscriptional regulation of NAD+-isocitrate dehydrogenase activity is one mechanism of restricting carbon flux through the decarboxylative section of the TCA cycle during lipid mobilization in germinating oilseeds.
Resumo:
The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.
Resumo:
Introdução: As doenças cardiovasculares são a principal causa de morte no Brasil e no mundo e apresentam importante contribuição para a carga global de doenças. A dieta tem sido considerada um dos determinantes primários do estado de saúde dos indivíduos, atuando na modulação dos fatores de risco metabólicos para doença cardiovascular. Objetivos: Desenvolver um modelo conceitual para a relação entre fatores de risco metabólicos e investigar sua associação com padrões de dieta de adultos e idosos residentes no município de São Paulo. Métodos: Estudo transversal de base populacional com amostra probabilística de adultos e idosos, residentes em área urbana do município de São Paulo, que participaram do Inquérito de Saúde do Município de São Paulo, realizado em duas fases entre os anos de 2008 e 2011 (estudo ISA Capital 2008). Na primeira fase do estudo, 1.102 adultos e idosos, de ambos os sexos, foram entrevistados no domicílio, por meio da aplicação de questionário estruturado e do recordatório alimentar de 24 horas. Na segunda fase, 642 indivíduos adultos e idosos foram reavaliados quanto ao consumo alimentar por meio da aplicação, por telefone, do segundo recordatório alimentar, e, destes, 592 participaram da coleta domiciliar de amostras de sangue venoso, da medição antropométrica e da aferição da pressão arterial por técnico de enfermagem. Os alimentos relatados em ambos os recordatórios foram agrupados segundo a similaridade do valor nutricional e hábitos alimentares da população, e corrigidos pela variância intrapessoal da ingestão por procedimentos estatísticos da plataforma online Multiple Source Method. Os grupos de alimentos foram analisados por meio de análise fatorial exploratória e confirmatória (manuscrito 1) e por modelos de equações estruturais exploratórios (manuscrito 3), a fim de obter os padrões de dieta. O modelo conceitual da relação entre os fatores de risco metabólicos (leptina sérica, proteína C-reativa de alta sensibilidade sérica, pressão arterial sistólica e diastólica, razão colesterol total/lipoproteína de alta densidade, razão triacilglicerol/lipoproteína de alta densidade, glicemia de jejum plasmática, circunferência da cintura e peso corporal) foi obtido por modelos de equações estruturais estratificados por sexo (manuscrito 2). Por fim, a associação dos padrões de dieta com o modelo conceitual proposto (manuscrito 3) foi investigada por modelos de equações estruturais exploratórios. Índices de qualidade de ajuste foram estimados para avaliar a adequação de todos os modelos. As análises foram realizadas no programa Mplus versão 6.12. Resultados: No manuscrito 1, a análise fatorial exploratória revelou a existência de dois padrões de dieta, os quais apresentaram boa qualidade de ajuste na análise fatorial confirmatória quando aplicados os pontos de corte de cargas fatoriais |0,25| na rotação oblíqua Promax. No manuscrito 2, a relação entre os fatores de risco metabólicos foi diferente entre os sexos. Nas mulheres, a leptina sérica apresentou efeitos indiretos e positivos, mediados pelo peso corporal e pela circunferência da cintura, em todos os fatores de risco avaliados. Já nos homens, a leptina sérica apresentou efeitos diretos e positivos sobre a proteína C-reativa de alta sensibilidade e efeitos indiretos e positivos (mediados pelo peso corporal e pela circunferência da cintura) sobre a razão triacilglicerol/lipoproteína de alta densidade, colesterol total/lipoproteína de alta densidade e glicemia de jejum plasmática. No manuscrito 3, foram obtidos três padrões de dieta, dos quais o Tradicional apresentou relação direta e negativa com a leptina sérica e relação indireta e negativa com o peso corporal e a circunferência da cintura, bem como com os demais fatores de risco metabólicos. Já o padrão Prudente apresentou relação direta e negativa com a pressão arterial sistólica, enquanto o padrão Moderno não se associou aos fatores de risco metabólicos investigados. Conclusão: Diferenças nos padrões de dieta de acordo com o tipo de rotação fatorial empregada foram observadas. A relação entre os fatores de risco metabólicos para doença cardiovascular foi distinta entre homens e mulheres, sendo a leptina um dos possíveis hormônios envolvidos. Os padrões de dieta Tradicional e Prudente associaram-se inversamente com os fatores de risco metabólicos, desempenhando uma importante estratégia de prevenção e controle às doenças cardiovasculares no país.
Resumo:
Obesity, with its related problems, is recognized as the fastest growing disease epidemic facing the world, yet we still have limited insight into the regulation of adipose tissue mass in humans. We have previously shown that adipose-derived microvascular endothelial cells (MVECs) secrete a factor(s) that increases proliferation of human preadipocytes. We now demonstrate that coculture of human preadipocytes with MVECs significantly increases preadipocyte differentiation, evidenced by dramatically increased triacylglycerol accumulation and glycerol-3-phosphate dehydrogenase activity compared with controls. Subsequent analysis identified fibroblast growth factor (FGF)-1 as an adipogenic factor produced by MVECs. Expression of FGF-1 was demonstrated in MVECs but not in preadipocytes, while preadipocytes were shown to express FGF receptors 1-4. The proliferative effect of MVECs on human preadipocytes was blocked using a neutralizing antibody specific for FGF-1. Pharmacological inhibition of FGF-1 signaling at multiple steps inhibits preadipocyte replication and differentiation, supporting the key adipogenic role of FGF-1. We also show that 3T3-L1 cells, a highly efficient murine model of adipogenesis, express FGF-1 and, unlike human preadipocytes, display no increased differentiation potential in response to exogenous FGF-1. Conversely, FGF-1-treated human preadipocytes proliferate rapidly and differentiate with high efficiency in a manner characteristic of 3T3-L1 cells. We therefore suggest that FGF-1 is a key human adipogenic factor, and these data expand our understanding of human fat tissue growth and have significant potential for development of novel therapeutic strategies in the prevention and management of human obesity.
Resumo:
Enzyme products did not have a significant effect (P>0.05) on weekly fed intake and weight gain of birds. But feed intake tended to drop and weight gain tended to increase in response to supplementation of the three enzymes. Weight gain of the birds was increased by 0.6% with lipase, 3.7% with phytase and 2.4% with xylanase. Xylanase had a marked effect (P
Resumo:
The condition and quality of cultured blue mussels (Mytilus edulis) are affected by various environmental characteristics including temperature, salinity, food concentration, composition and year-to-year variability, waves, tides, and currents. Mussels are a keystone species in the ecosystem, affecting the surrounding environment through filtration, biodeposition and nutrient recycling. This study evaluated the effects of culture depth and post-harvest handling on cultured blue mussels in Newfoundland, Canada. Depth was examined over two years; three shallow water (5 m depth) and three deep water sites (15 m depth) were compared for environmental characteristics, mussel physiological stress response, growth, and biochemical composition. The area examined presented complex hydrodynamic characteristics; deep water sites appeared to be located more often near or within the pycnocline than shallow water sites. Deep water sites presented lower temperatures than shallow sites from spring to fall. Physiological stress response varied seasonally, but was unaffected by culture depth. In Year 1 shallow and deep water mussels presented similar growth, while in Year 2 deep water mussels showed better final condition. Lipid and glycogen showed seasonal variation, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a higher content of omega-3s PUFA in deep water sites at the end of Year 2. Under extreme weather conditions, deep water appeared to provide a more stable environment for mussel growth than shallow water. Harvested mussels were kept under ambient live-holding conditions for one month during the fall, winter, and spring seasons. They were compared to freshly harvested mussels for condition, biochemical profile and palatability. A progressive loss of dry tissue weight and an increase in water content were shown over the holding period during the fall and spring seasons, when compared to field controls. The biochemical analysis suggested seasonal changes; differences in triacylglycerol content were found in the spring season when compared with controls. The palatability data indicated that the panellists were unable to determine a difference between mussels kept in holding and those freshly harvested from the site. This study presents new knowledge for mussel farming, especially in terms of environmental interactions and deep water culture.