310 resultados para TRANSESTERIFICATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel density is a key parameter in biodiesel simulations and process development. In this work we selected, evaluated and improved two density models, one theoretical (Rackett-Soave) and one empirical (Lapuerta's method) for methanol based biodiesels (FAME) and ethanol based biodiesel (FAEE). For this purpose, biodiesel was produced from vegetable oils (sunflower, rapeseed, soybean, olive, safflower and other two commercial mixtures of vegetable oils) and animal fats (edible and crude pork fat and beef tallow) using both methanol and ethanol for the transesterification reactions, and blended to get 21 FAME and 21 FAEE, reporting their density and detailed composition. Bibliographic data have also been used. The Rackett-Soave method has been improved by the use of a new acentric factor correlation, whereas the parameters of the empirical one are improved by considering a bigger density data bank. Results show that the evaluated models could be used to estimate the biodiesel density with a good grade of accuracy but the performed modifications improve the accuracy of the models: ARD (%) for FAME; 0.33, and FAEE; 0.26, both calculated with the modification of Rackett-Soave method and ARD (%) for FAME; 0.40 calculated with the modification of the Lapuerta's method).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PAHs are pollutants of concern since they are known carcinogenic compounds. Their occurrence is mainly related to combustion or pyrolysis of organic matter such as fossil fuels. In the current scenario where biofuels are growingly important, it is also necessary to characterize PAH emissions due to their combustion. There are a number of works concerning PAH emissions from biodiesel combustion in Diesel engines, however, there are few regarding the difference between them depending on the feedstock and type of alcohol used in the transesterification. The authors have processed and characterized biodiesel from several feedstocks (Le. tallow, palm, rapeseed, soy-bean, coconut, peanut and linseed oils) to obtain FAME and FAEE and they have developed a method to measure the PAHs originated during their combustion in a bomb calorimeter. The tests have been carried out under different oxygen pressure conditions, and samples have been c1eaned from the bomb after each one of these tests. The samples have been prepared for GC-MS analysis, where PAH quantities among some other combustion products have been assessed. This work shows statistical relations obtained between the measured amounts of 18 PAHs of concern and the composition (oil and type of alcohol) used to obtain the biodiesel, and also the oxygen pressure during combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biofuels in the aviation sector has economic and environmental benefits. Among the options for the production of renewable jet fuels, hydroprocessed esters and fatty acids (HEFA) have received predominant attention in comparison with fatty acid methyl esters (FAME), which are not approved as additives for jet fuels. However, the presence of oxygen in methyl esters tends to reduce soot emissions and therefore particulate matter emissions. This sooting tendency is quantified in this work with an oxygen-extended sooting index, based on smoke point measurements. Results have shown considerable reduction in the sooting tendency for all biokerosenes (produced by transesterification and eventually distillation) with respect to fossil kerosenes. Among the tested biokerosenes, that made from palm kernel oil was the most effective one, and nondistilled methyl esters (from camelina and linseed oils) showed lower effectiveness than distilled biokerosenes to reduce the sooting tendency. These results may constitute an additional argument for the use of FAME’s as blend components of jet fuels. Other arguments were pointed out in previous publications, but some controversy has aroused over the use of these components. Some of the criticism was based on the fact that the methods used in our previous work are not approved for jet fuels in the standard methods and concluded that the use of FAME in any amount is, thus, inappropriate. However, some of the standard methods are not updated for considering oxygenated components (like the method for obtaining the lower heating value), and others are not precise enough (like the methods for measuring the freezing point), whereas some alternative methods may provide better reproducibility for oxygenated fuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel is currently produced from a catalytic transesterification reaction of various types of edible and non-edible oil with methanol. The use of waste animal tallow instead of edible oils opens a route to recycle this waste. This material has the advantage of lower costs but the problem of high content of free fatty acids, becoming necessary a pre-esterification reaction that increases the cost of the catalytic process. The production of biodiesel using supercritical alcohols is appropriate for materials with high acidity and water content, therefore the use of this process with animal fat is a promising alternative. Ethanol has been used because it can be produced from biomass via fermentation resulting in a complete renewable biodiesel, instead of methanol that derives from fossil feedstocks. Two different processes have been studied: first, the direct transesterification of animal fat using supercritical ethanol and second a two-step process where the first step is a hydrolysis of the animal fat and the second step is the esterification of the resulting fatty acids. The temperature, the molar ratio ethanol:fat and the time have been modified in the different reactions to study the effect in the final conversion and the degradation of the unsaturated fatty acid esters, main inconvenient of these high temperature and pressure processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversos biomateriais podem ser aplicados como suportes na imobilização de células totais de fungos filamentosos ou enzimas isoladas, visando a manutenção e o prolongamento da atividade enzimática em processos biocatalíticos. Exemplos promissores de biomateriais são a fibroína da seda e o alginato de sódio. A fibroína é um material protéico com alta estabilidade térmica, elasticidade, resistência à tensão, não sofre ataque microbiano, baixo custo de purificação e alta tenacidade, o alginato é um biopolímero versátil, devido a suas propriedades gelificantes em soluções aquosas. Assim, neste trabalho empregou-se micélios do fungo derivado de ambiente marinho, Penicillium citrinum CBMAI 1186, livres e imobilizados em biopolímeros (fibra de algodão, fibra de fibroína da seda e fibra de paina) na biorredução quimiosseletiva, regiosseletiva e enantiosseletiva da ligação α,β-C=C de enonas α,β-, α,β,γ,δ- e di-α,β-insaturadas previamente sintetizados pela a reação de condensação aldólica. Foi possível a utilização do fungo P. citrinum CBMAI 1186 na redução quimiosseletiva, regiosseletiva e enantiosseletiva da ligação dupla carbono-carbono de sistemas α,β-insaturados. A imobilização do fungo P. citrinum CBMAI 1186 em biopolímeros (algodão, fibroína da seda, paina e quitosana) permitiu a prolongamento da atividade celular do fungo. O protocolo desenvolvido foi capaz de obter compostos até então descritos apenas por síntese clássica. Também foi realizado reações de resolução enzimática de derivados de haloidrinas por diferentes lipases microbianas de: Pseudomonas fluorescens, Candida cylindracea, Rhizopus niveus e Aspergillus niger. A lipase de P. fluorescens foi imobilizada em esferas de fibroína do bicho da seda (método 1, via adsorção) e em blenda com alginato de cálcio (método 2, via encapsulação) em diferentes condições, tais como, variação de solvente, variação da quantidade de enzima imobilizada e tempo de reação. As condições otimizadas foram empregadas em diferentes haloidrinas, rendendo elevados excessos enantioméricos (ee > 99%) e alta razão enanantiomérica (E > 200) para os produtos acetilados. Foi possível desenvolver um protocolo simples, barato e prático para a síntese enantiosseletiva de haloidrina reforçando a versatilidade da fibroína e do alginato como suportes de imobilização para catalisadores heterogêneos. Também foi possível utilizar a lipase imobilizada (método 2) na reação de transesterificação para obtenção do biodiesel etílico. As melhores condições para o bom funcionamento do biocatalisador foram: 30% do biocatalisador, 20% de n-hexano, relação óleo e etanol de 1:4 a 32 ºC por 48 h em agitação magnética (400 rpm). Essas condições permitiram a formação de 42% de rendimento do biodiesel etílico. O biocatalisador apresentou algumas limitações reacionais, tais como, fragilidade frente a elevadas temperaturas (> 32 ºC) e prolongado tempo de agitação magnética. Porém, permaneceu apto no meio por 4 ciclos consecutivas. Conclui-se que os biomateriais (fibroína, alginato e quitosana) podem ser utilizados como alternativas versáteis na imobilização de micélios de fungos filamentoso e de enzimas isoladas para aplicações em biocatalíticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkyl aluminium alkoxides have been used as initiators for the ring opening polymerisation of ε-caprolactone and δ-valerolactone. The effect of the reaction solvent on the kinetics of the polymerisation of ε-caprolactone has been studied. The rate of polymerisation was found to be faster in solvents of lower polarity and donor nature such as toluene. In general solvents of higher polarity resulted in a decreased rate of polymerisation. However solvents such as THF or DMF with a lone pair of electrons capable of forming a complex with the aluminium centre slowed the polymerisation further. The size of the monomer also proved to be an important factor in the kinetics of the reaction. The six membered ring, δ-valerolactone has less ring strain than the seven membered ring ε-caprolactone and thus the polymerisation of δ-valerolactone is slower than the corresponding polymerisation of ε-caprolactone. Both the alkoxide and alkyl group structures have an effect on the polymerisation. In general bulkier alkoxide groups provide greater steric hindrance around the active site at the beginning of the reaction. This causes an induction or a build up period that is related to the both the steric hindrance and also the electronic effects provided by the alkoxide group. The alkyl group structure has an effect throughout the polymerisation because it remains adjacent to the active centre. The number of alkoxide groups on the aluminium centre is also important, using a dialkoxide as an initiator yields polymers with molecular weights approximately half that of the corresponding reactions using a mono alkoxide. Transesterification reactions have also been found to occur after most of the monomer has been consumed. These transesterification reactions are exaggerated as temperature increases. A method of producing tri-block co-polymers has also been developed. A di-hydroxy functional pre-polymer, PHBV, was reacted with an aluminium alkyl to form a di-alkoxide macroinitiator which was subsequently used as an initiator for the polymerisation of ε-caprolactone to form an ABA type tri-block co-polymer. The molecular weight and other properties were predictable from the initial monomer/initiator ratios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to synthesise a series of hydrophilic derivatives of cis-1,2-dihydroxy-3,5-cyclohexadiene (cis-DHCD) and copolymerise them with 2-hydroxyethyl methacrylate (HEMA), to produce a completely new range of hydrogel materials. It is theorised that hydrogels incorporating such derivatives of cis-DHCD will exhibit good strength and elasticity in addition to good water binding ability. The synthesis of derivatives was attempted by both enzymatic and chemical methods. Enzyme synthesis involved the transesterification of cis-DHCD with a number of trichloro and trifluoroethyl esters using the enzyme lipase porcine pancreas to catalyse the reaction in organic solvent. Cyclohexanol was used in initial studies to assess the viability of enzyme catalysed reactions. Chemical synthesis involved the epoxidation of a number of unsaturated carboxylic acids and the subsequent reaction of these epoxy acids with cis-DHCD in DCC/DMAP catalysed esterifications. The silylation of cis-DHCD using TBDCS and BSA was also studied. The rate of aromatisation of cis-DHCD at room temperature was studied in order to assess its stability and 1H NMR studies were also undertaken to determine the conformations adopted by derivatives of cis-DHCD. The copolymerisation of diepoxybutanoate, diepoxyundecanoate, dibutenoate and silyl protected derivatives of cis-DHCD with HEMA, to produce a new group of hydrogels was investigated. The EWC and mechanical properties of these hydrogels were measured and DSC was used to determine the amount of freezing and non-freezing water in the membranes. The effect on EWC of opening the epoxide rings of the comonomers was also investigated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-performance liquid chromatographic methods are developed for the simultaneous determination of various salicylates, their p-hydroxy isomers and nicotinic acid esters. The method is sensitive enough to detect trace amounts (~µM/L)of the product generated from cross reactivity between the drugs and the vehicle. The developed method also allows analysis of various topical products containing salicylate and nicotinate esters in their formulations. Applying this method, the degradation profiles of salicylates, nicotinates, p-hydroxy benzoate, o-methoxy benzoate and aspirin prodrugs in alkaline media are determined. The profile for alkyl salicylate degradation is found to be first order (A---? B) When the alcoholic radical is similar to that of the ester. In alcohol having a radical different from that of the ester function, the degradation is found to proceed through competitive transesterification and hydrolysis. The intermediates are identified following synthesis and isolation. The rate and extent of transesterification depends on the proportion of alcohol present in the system. Equations are presented to model the time profiles of reactant and product concentration. The reactions are base catalysed and the predominant pathway involves a concerted solvent attack upon the salicylate anion. Competitive hydrolysis of both ester components also follows this mechanism at moderate pH values but rates increase under strongly alkaline conditions as direct hydroxide attack becomes significant. In contrast, transesterification is independent of base concentration once full ionization is accomplished. The competitive hydrolysis is modelled using equations involving the dielectric constant of the medium. A range of other esters are also shown to undergo base-catalysed transesterification. In non-alcoholic solution phenyl salicylate undergoes a concentration-dependent oligomerisation which yields salsalate among the products. Competitive transesterification and hydrolysis also occur in products for topical use which have vehicles based upon alcohol, glycol or glycol polymers. Such reactions may compromise stability assessments, pharmaceutical integrity and delivery profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multistage distillation column in which mass transfer and a reversible chemical reaction occurred simultaneously, has been investigated to formulate a technique by which this process can be analysed or predicted. A transesterification reaction between ethyl alcohol and butyl acetate, catalysed by concentrated sulphuric acid, was selected for the investigation and all the components were analysed on a gas liquid chromatograph. The transesterification reaction kinetics have been studied in a batch reactor for catalyst concentrations of 0.1 - 1.0 weight percent and temperatures between 21.4 and 85.0 °C. The reaction was found to be second order and dependent on the catalyst concentration at a given temperature. The vapour liquid equilibrium data for six binary, four ternary and one quaternary systems are measured at atmospheric pressure using a modified Cathala dynamic equilibrium still. The systems with the exception of ethyl alcohol - butyl alcohol mixtures, were found to be non-ideal. Multicomponent vapour liquid equilibrium compositions were predicted by a computer programme which utilised the Van Laar constants obtained from the binary data sets. Good agreement was obtained between the predicted and experimental quaternary equilibrium vapour compositions. Continuous transesterification experiments were carried out in a six stage sieve plate distillation column. The column was 3" in internal diameter and of unit construction in glass. The plates were 8" apart and had a free area of 7.7%. Both the liquid and vapour streams were analysed. The component conversion was dependent on the boilup rate and the reflux ratio. Because of the presence of the reaction, the concentration of one of the lighter components increased below the feed plate. In the same region a highly developed foam was formed due to the presence of the catalyst. The experimental results were analysed by the solution of a series of simultaneous enthalpy and mass equations. Good agreement was obtained between the experimental and calculated results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel is a promising non-toxic and biodegradable renewable fuel, synthesized by the homogeneous base-catalyzed transesterification of vegetable oils or animal fats with methanol or ethanol. Removal of the base, typically Na or K alkoxide, after reaction is a major problem since aqueous quenching results in stable emulsions and saponification. The use of a solid base catalyst offers several process advantages including the elimination of a quenching step (and associated basic water waste) to isolate the products, and the opportunity to operate in a continuous process. The synthesis and characterization of a series of Li-doped CaO and Mg-Al hydrotalcite solid base catalysts were presented and their physicochemical properties were correlated with their activity in biodiesel synthesis. Both catalysts were effective solid bases for the transesterification of triglycerides to the methyl ester, with catalyst activity related to the electronic properties of Li and Mg dopants. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.