957 resultados para TRABECULAR SHEAR-STRESS
Resumo:
São apresentadas análises das recomendações para estimar a resistência ao puncionamento de lajes lisas de acordo com a versão atual da norma brasileira, a NBR 6118:2003, que não considera o efeito da retangularidade de pilares internos, e sua predecessora, a NBR 6118:1980. Em seções transversais retangulares, o índice de polarização das tensões de cisalhamento é crescente. Isto altera a forma de ruptura da laje, já que a punção se inicia em torno das extremidades da seção do pilar, não se estendendo para os lados maiores, como prescreve a norma, comportamento este que reduz a resistência última das lajes frente às estimativas normativas. São apresentados os resultados de uma análise numérica por elementos finitos (M.E.F.) e uma proposta para melhorar a ductilidade das lajes lisas através das dimensões mínimas dos pilares. Observou-se que a NBR 6118:1980 mostrou-se conservadora e que as estimativas da NBR 6118: 2003 podem ser melhoradas.
Resumo:
Objective: To investigate the relationship between TXNIP polymorphisms, diabetes and hypertension phenotypes in the Brazilian general population. Methods: Five hundred seventy-six individuals randomly selected from the general urban population according to the MONICA-WHO project guidelines were phenotyped for cardiovascular risk factors. A second, independent, sample composed of 487 family-trios from a different site was also selected. Nine TXNIP polymorphisms were studied. The potential association between TXNIP variability and glucose-phenotypes in children was also explored. TXNIP expression was quantified by real-time PCR in 53 samples from human smooth muscle cells primary culture. Results: TXNIP rs7211 and rs7212 polymorphisms were significantly associated with glucose and blood pressure related phenotypes. In multivariate logistic regression models the studied markers remained associated with diabetes even after adjustment for covariates. TXNIP rs7211 T/rs7212 G haplotype (present in approximately 17% of individuals) was significantly associated to diabetes in both samples. In children, the TXNIP rs7211 T/rs7212 G haplotype was associated with fasting insulin concentrations. Finally, cells harboring TXNIP rs7212 G allele presented higher TXNIP expression levels compared with carriers of TXNIP rs7212 CC genotype (p = 0.02). Conclusion: Carriers of TXNIP genetic variants presented higher TXNIP expression, early signs of glucose homeostasis derangement and increased susceptibility to chronic metabolic conditions such as diabetes and hypertension. Our data suggest that genetic variation in the TXNIP gene may act as a "common ground" modulator of both traits: diabetes and hypertension. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx-), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N-epsilon-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx- levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx- levels were partially restored. Conclusion: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.
Resumo:
The influence of the shear stress and angular momentum on the nonlinear spherical collapse model is discussed in the framework of the Einstein–de Sitter and ΛCDM models. By assuming that the vacuum component is not clustering within the homogeneous nonspherical overdensities, we show how the local rotation and shear affect the linear density threshold for collapse of the nonrelativistic component (δc) and its virial overdensity (ΔV ). It is also found that the net effect of shear and rotation in galactic scale is responsible for higher values of the linear overdensity parameter as compared with the standard spherical collapse model (no shear and rotation)
Resumo:
A wall film model has been implemented in a customized version of KIVA code developed at University of Bologna. Under the hypothesis of `thin laminar ow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film. The governing equations have been integrated in space by using a finite volume approach with a first order upwind differencing scheme and they have been integrated in time with a fully explicit method. The model is validated using two different test cases reproducing PFI gasoline and DI Diesel engine wall film conditions.
Resumo:
Two analytical models are proposed to describe two different mechanisms of lava tubes formation. A first model is introduced to describe the development of a solid crust in the central region of the channel, and the formation of a tube when crust widens until it reaches the leve\'es. The Newtonian assumption is considered and the steady state Navier- Stokes equation in a rectangular conduit is solved. A constant heat flux density assigned at the upper flow surface resumes the combined effects of two thermal processes: radiation and convection into the atmosphere. Advective terms are also included, by the introduction of velocity into the expression of temperature. Velocity is calculated as an average value over the channel width, so that lateral variations of temperature are neglected. As long as the upper flow surface cools, a solid layer develops, described as a plastic body, having a resistance to shear deformation. If the applied shear stress exceeds this resistance, crust breaks, otherwise, solid fragments present at the flow surface can weld together forming a continuous roof, as it happens in the sidewall flow regions. Variations of channel width, ground slope and effusion rate are analyzed, as parameters that strongly affect the shear stress values. Crust growing is favored when the channel widens, and tube formation is possible when the ground slope or the effusion rate reduce. A comparison of results is successfully made with data obtained from the analysis of pictures of actual flows. The second model describes the formation of a stable, well defined crust along both channel sides, their growing towards the center and their welding to form the tube roof. The fluid motion is described as in the model above. Thermal budget takes into account conduction into the atmosphere, and advection is included considering the velocity depending both on depth and channel width. The solidified crust has a non uniform thickness along the channel width. Stresses acting on the crust are calculated using the equations of the elastic thin plate, pinned at its ends. The model allows to calculate the distance where crust thickness is able to resist the drag of the underlying fluid and to sustain its weight by itself, and the level of the fluid can lower below the tube roof. Viscosity and thermal conductivity have been experimentally investigated through the use of a rotational viscosimeter. Analyzing samples coming from Mount Etna (2002) the following results have been obtained: the fluid is Newtonian and the thermal conductivity is constant in a range of temperature above the liquidus. For lower temperature, the fluid becomes non homogeneous, and the used experimental techniques are not able to detect any properties, because measurements are not reproducible.
Resumo:
In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.
Resumo:
Diese Doktorarbeit untersucht das Verhalten von komplexenFluidenunter Scherung, insbesondere den Einfluss von Scherflüssenauf dieStrukturbildung.Dazu wird ein Modell dieser entworfen, welches imRahmen von Molekulardynamiksimulationen verwendet wird.Zunächst werden Gleichgewichtseigenschaften dieses Modellsuntersucht.Hierbei wird unter anderem die Lage desOrdnungs--Unordnungsübergangs von derisotropen zur lamellaren Phase der Dimere bestimmt.Der Einfluss von Scherflüssen auf diese lamellare Phase wirdnununtersucht und mit analytischen Theorien verglichen. Die Scherung einer parallelen lamellaren Phase ruft eineNeuausrichtung des Direktors in Flussrichtung hervor.Das verursacht eine Verminderung der Schichtdicke mitsteigender Scherrateund führt oberhalb eines Schwellwertes zu Ondulationen.Ein vergleichbares Verhalten wird auch in lamellarenSystemengefunden, an denen in Richtung des Direktors gezogen wird.Allerdings wird festgestellt, dass die Art der Bifurkationenin beidenFällen unterschiedlich ist.Unter Scherung wird ein Übergang von Lamellen parallelerAusrichtung zu senkrechter gefunden.Dabei wird beoachtet, dass die Scherspannung in senkrechterOrientierungniedriger als in der parallelen ist.Dies führt unter bestimmten Bedingungen zum Auftreten vonScherbändern, was auch in Simulationen beobachtet wird. Es ist gelungen mit einem einfachen Modell viele Apsekte desVerhalten vonkomplexen Fluiden wiederzugeben. Die Strukturbildung hängt offensichtlich nurbedingt von lokalen Eigenschaften der Moleküle ab.
Resumo:
Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.
Resumo:
Most basaltic volcanoes are affected by recurrent lateral instabilities during their evolution. Numerous factors have been shown to be involved in the process of flank destabilization occurring over long periods of time or by instantaneous failures. However, the role of these factors on the mechanical behaviour and stability of volcanic edifices is poorly-constrained as lateral failure usually results from the combined effects of several parameters. Our study focuses on the morphological and structural comparison of two end-member basaltic systems, La Reunion (Indian ocean, France) and Stromboli (southern Tyrrhenian sea, Italy). We showed that despite major differences on their volumes and geodynamic settings, both systems present some similarities as they are characterized by an intense intrusive activity along well-developed rift zones and recurrent phenomena of flank collapse during their evolution. Among the factors of instability, the examples of la Reunion and Stromboli evidence the major contribution of intrusive complexes to volcano growth and destruction as attested by field observations and the monitoring of these active volcanoes. Classical models consider the relationship between vertical intrusions of magma and flank movements along a preexisting sliding surface. A set of published and new field data from Piton des Neiges volcano (La Reunion) allowed us to recognize the role of subhorizontal intrusions in the process of flank instability and to characterize the geometry of both subvertical and subhorizontal intrusions within basaltic edifices. This study compares the results of numerical modelling of the displacements associated with high-angle and low-angle intrusions within basaltic volcanoes. We use a Mixed Boundary Element Method to investigate the mechanical response of an edifice to the injection of magmatic intrusions in different stress fields. Our results indicate that the anisotropy of the stress field favours the slip along the intrusions due to cointrusive shear stress, generating flank-scale displacements of the edifice, especially in the case of subhorizontal intrusions, capable of triggering large-scale flank collapses on basaltic volcanoes. Applications of our theoretical results to real cases of flank displacements on basaltic volcanoes (such as the 2007 eruptive crisis at La Reunion and Stromboli) revealed that the previous model of subvertical intrusions-related collapse is a likely mechanism affecting small-scale steeply-sloping basaltic volcanoes like Stromboli. Furthermore, our field study combined to modelling results confirms the importance of shallow-dipping intrusions in the morpho-structural evolution of large gently-sloping basaltic volcanoes like Piton de la Fournaise, Etna and Kilauea, with particular regards to flank instability, which can cause catastrophic tsunamis.
Resumo:
Fatigue life in metals is predicted utilizing regression analysis of large sets of experimental data, thus representing the material’s macroscopic response. Furthermore, a high variability in the short crack growth (SCG) rate has been observed in polycrystalline materials, in which the evolution and distributionof local plasticity is strongly influenced by the microstructure features. The present work serves to (a) identify the relationship between the crack driving force based on the local microstructure in the proximity of the crack-tip and (b) defines the correlation between scatter observed in the SCG rates to variability in the microstructure. A crystal plasticity model based on the fast Fourier transform formulation of the elasto-viscoplastic problem (CP-EVP-FFT) is used, since the ability to account for the both elastic and plastic regime is critical in fatigue. Fatigue is governed by slip irreversibility, resulting in crack growth, which starts to occur during local elasto-plastic transition. To investigate the effects of microstructure variability on the SCG rate, sets of different microstructure realizations are constructed, in which cracks of different length are introduced to mimic quasi-static SCG in engineering alloys. From these results, the behavior of the characteristic variables of different length scale are analyzed: (i) Von Mises stress fields (ii) resolved shear stress/strain in the pertinent slip systems, and (iii) slip accumulation/irreversibilities. Through fatigue indicator parameters (FIP), scatter within the SCG rates is related to variability in the microstructural features; the results demonstrate that this relationship between microstructure variability and uncertainty in fatigue behavior is critical for accurate fatigue life prediction.
Resumo:
Supercritical Emulsion Extraction technology (SEE-C) was proposed for the production of poly-lactic-co-glycolic acid microcarriers. SEE-C operating parameters as pressure, temperature and flow rate ratios were analyzed and the process performance was optimized in terms of size distribution and encapsulation efficiency. Microdevices loaded with bovine serum insulin were produced with different sizes (2 and 3 µm) or insulin charges (3 and 6 mg/g) and with an encapsulation efficiency of 60%. The microcarriers were characterized in terms of insulin release profile in two different media (PBS and DMEM) and the diffusion and degradation constants were also estimated by using a mathematical model. PLGA microdevices were also used in a cultivation of embryonic ventricular myoblasts (cell line H9c2 obtained from rat) in a FBS serum free medium to monitor cell viability and growth in dependence of insulin released. Good cell viability and growth were observed on 3 µm microdevices loaded with 3 mg/g of insulin. PLGA microspheres loaded with growth factors (GFs) were charged into alginate scaffold with human Mesenchimal Steam Cells (hMSC) for bone tissue engineering with the aim of monitoring the effect of the local release of these signals on cells differentiation. These “living” 3D scaffolds were incubated in a direct perfusion tubular bioreactor to enhance nutrient transport and exposing the cells to a given shear stress. Different GFs such as, h-VEGF, h-BMP2 and a mix of two (ratio 1:1) were loaded and alginate beads were recovered from dynamic (tubular perfusion system bioreactor) and static culture at different time points (1st, 7th, 21st days) for the analytical assays such as, live/dead; alkaline phosphatase; osteocalcin; osteopontin and Van Kossa Immunoassay. The immunoassay confirmed always a better cells differentiation in the bioreactor with respect to the static culture and revealed a great influence of the BMP-2 released in the scaffold on cell differentiation.
Resumo:
Liquids under the influence of external fields exhibit a wide range of intriguing phenomena that can be markedly different from the behaviour of a quiescent system. This work considers two different systems — a glassforming Yukawa system and a colloid-polymer mixture — by Molecular Dynamics (MD) computer simulations coupled to dissipative particle dynamics. The former consists of a 50-50 binary mixture of differently-sized, like-charged colloids interacting via a screened Coulomb (Yukawa) potential. Near the glass transition the influence of an external shear field is studied. In particular, the transition from elastic response to plastic flow is of interest. At first, this model is characterised in equilibrium. Upon decreasing temperature it exhibits the typical dynamics of glassforming liquids, i.e. the structural relaxation time τα grows strongly in a rather small temperature range. This is discussed with respect to the mode-coupling theory of the glass transition (MCT). For the simulation of bulk systems under shear, Lees-Edwards boundary conditions are applied. At constant shear rates γ˙ ≫ 1/τα the relevant time scale is given by 1/γ˙ and the system shows shear thinning behaviour. In order to understand the pronounced differences between a quiescent system and a system under shear, the response to a suddenly commencing or terminating shear flow is studied. After the switch-on of the shear field the shear stress shows an overshoot, marking the transition from elastic to plastic deformation, which is connected to a super-diffusive increase of the mean squared displacement. Since the average static structure only depends on the value of the shear stress, it does not discriminate between those two regimes. The distribution of local stresses, in contrast, becomes broader as soon as the system starts flowing. After a switch-off of the shear field, these additional fluctuations are responsible for the fast decay of stresses, which occurs on a time scale 1/γ˙ . The stress decay after a switch-off in the elastic regime, on the other hand, happens on the much larger time scale of structural relaxation τα. While stresses decrease to zero after a switch-off for temperatures above the glass transition, they decay to a finite value for lower temperatures. The obtained results are important for advancing new theoretical approaches in the framework of mode-coupling theory. Furthermore, they suggest new experimental investigations on colloidal systems. The colloid-polymer mixture is studied in the context of the behaviour near the critical point of phase separation. For the MD simulations a new effective model with soft interaction potentials is introduced and its phase diagram is presented. Here, mainly the equilibrium properties of this model are characterised. While the self-diffusion constants of colloids and polymers do not change strongly when the critical point is approached, critical slowing down of interdiffusion is observed. The order parameter fluctuations can be determined through the long-wavelength limit of static structure factors. For this strongly asymmetric mixture it is shown how the relevant structure factor can be extracted by a diagonalisation of a matrix that contains the partial static structure factors. By presenting first results of this model under shear it is demonstrated that it is suitable for non-equilibrium simulations as well.
Resumo:
The thesis deals with numerical algorithms for fluid-structure interaction problems with application in blood flow modelling. It starts with a short introduction on the mathematical description of incompressible viscous flow with non-Newtonian viscosity and a moving linear viscoelastic structure. The mathematical model consists of the generalized Navier-Stokes equation used for the description of fluid flow and the generalized string model for structure movement. The arbitrary Lagrangian-Eulerian approach is used in order to take into account moving computational domain. A part of the thesis is devoted to the discussion on the non-Newtonian behaviour of shear-thinning fluids, which is in our case blood, and derivation of two non-Newtonian models frequently used in the blood flow modelling. Further we give a brief overview on recent fluid-structure interaction schemes with discussion about the difficulties arising in numerical modelling of blood flow. Our main contribution lies in numerical and experimental study of a new loosely-coupled partitioned scheme called the kinematic splitting fluid-structure interaction algorithm. We present stability analysis for a coupled problem of non-Newtonian shear-dependent fluids in moving domains with viscoelastic boundaries. Here, we assume both, the nonlinearity in convective as well is diffusive term. We analyse the convergence of proposed numerical scheme for a simplified fluid model of the Oseen type. Moreover, we present series of experiments including numerical error analysis, comparison of hemodynamic parameters for the Newtonian and non-Newtonian fluids and comparison of several physiologically relevant computational geometries in terms of wall displacement and wall shear stress. Numerical analysis and extensive experimental study for several standard geometries confirm reliability and accuracy of the proposed kinematic splitting scheme in order to approximate fluid-structure interaction problems.