884 resultados para Synthetic cannabinoids
Resumo:
A new method for the preparation of polyalkyl and polyarenefullerene derivatives C-60(RH)(n)(R=Bu,n=1-3; R=Ph,n=1-10) by the reaction of C-60 with organotin hydride in toluene is described. Another series of products of stannanes R(a)Sn(b)H(c) (R=Bu, a=3-8, b=1-4, c=0-3 R=Ph, a=3-11, b=1-5, c=0-4) were also obtained, which shows that C-60 can catalyze polymerization of organic-tin. These products were determined by mass and infrared spectrometry. And the possible reaction mechanisms are discussed.
Resumo:
Three new oxides Sm2SrCo2O7, Sm2BaCo2O7 and Gd2SrCo2O7 have been synthesized successfully by solid state reaction mathod. The X-Ray diffraction spectra show that they are all isostructural with Sr3Ti2O7, and Ln(2)SrCo(2)O(7)(Ln=Sm,Gd) crystallized in tetragonal system, Sm2BaCo2O7 in orthrhombic system. The Co-O bonds in CoO2 planes of Ln(2)SrCo(2)O(7) are shorter than those of LnSrCoO(4)(Ln=Sm, Gd), and so their delectrons are more delocalized and their electrical resistivities are smaller. The electrical resistivities versus temperature in the range 300 similar to 1100K showed that the five brides show the characters of weakly localized systems. In the lower temperature range, the magnetic behaviors of Gd2SrCo2O7 and GdSrCoO4 fit Curie-Weiss law well, and the magnetic exchange reaction in CoO2 sublattices of Gd2SrCo2O7 is ferromagnetic, but that of GdSrCoO4 is antiferromagnetic. The other three oxides with Sm3+ showed complex magnetic behaviors which is perhaps related with the complexity of Sm3+.
Resumo:
Three new oxides Ln(2)MCo(2)O(7) (Ln = Sm, Gd; M = Sr, Ba) have been synthesized in solid state reaction method. The powder X-ray diffraction spectra show that they are all isostructural with Sr3Ti2O7. The electrical resistivities in the temperature range 300-1100 K show that they are all semiconductors, and a transition to metals is observed at 1053, 1053, and 573 K for Sm2SrCo2O7, Gd2SrCo2O7, and Sm2BaCo2O7, respectively. The magnetic suspectivities of Gd2SrCo2O7 in the temperature range 300-673 K fit the Curie-Weiss law well. A plateau is observed in the curves of Sm(2)MCo(2)O(7) (M = Sr, Ba) which is attributed to the configuration state change of Co(III) from low spin to high spin. (C) 1995 Academic Press, Inc.
Resumo:
Jadeite was synthesized from its glass of stoichiometric composition NaAlSi2O6, and a colouring agent Cr2O3 (0.3-0.6 wt%) was added to achieve the emerald colour. The conditions employed were a pressure range of 3.0-5.0 GPa and a temperature range of 1150
Resumo:
A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.
Resumo:
We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.
Resumo:
A parametric method that extracts the ocean wave directional spectra from synthetic aperture radar (SAR) image is presented. The 180 degrees ambiguity of SAR image and the loss of information beyond the azimuthal cutoff can be overcome with this method. The ocean wave spectra can be obtained from SAR image directly by using iteration inversion mapping method with forward nonlinear mapping. Some numerical experiments have been made by using ERS-1 satellite SAR imagette data. The ocean wave direction retrieved from SAR imagette data is in agreement with the wind direction from the scatterometer data.
Resumo:
A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.
Resumo:
In this work, a thiourea-modified chitosan derivative (TMCD) was synthesized through two steps, O-carboxymethylated first and then modified by a polymeric Schiff's base of thiourea/glutaraldehyde. The adsorption behavior of mercury (II) ions onto TMCD was investigated through batch method. The maximum adsorption capacity for Hg(II) was found to be 6.29 mmol/g at pH 5.0 and both kinetic and thermodynamic parameters of the adsorption process were obtained. The results indicated that adsorption process was spontaneous exothermic reaction and kinetically followed pseudo-second-order model. The adsorption experiments also demonstrated TMCD had high adsorption selectivity towards Hg(II) ions when coexisted with Cu(II), Zn(II), Cd(II) and Ca(II) in solution and it could be easily regenerated and efficiently reused. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the investigation of diniconzole and triadimefon as chemical corrosion inhibitors for freshly polished copper in synthetic seawater (3.5% NaCl solution). Determination of weight loss, polarization curves, electrochemical impedance spectroscopy (EIS), and SEM, were performed to analyze the inhibiting performance of these compounds. Polarization curves show that they act as mixed-type inhibitors. EIS indicates that an adsorption film of the inhibitors is formed on copper surface. The highest values of inhibition efficiency are respectively, 99.2% and 97.3% at 100 mg/L concentration. Thermodynamic calculation suggests that chemisorptions between the compounds and copper are accordance with Langmuir adsorption isotherm. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Three optically active Schiff-base ligands have been prepared by condensation of 2-hydroxyacetophenone with (IR,2R)-(-)-1,2-diaminocyclohexane, (1S,2S)-(-)1,2-diphenylethylenediamine or R-(+)-2,2'-diamino-1,1'-binaphthalene, respectively. The products have been characterized by their IR, H-1- and C-13-NMR spectra.
Resumo:
The aim of the study was to compare the efficacy and safety of transvaginal trocar-guided polypropylene mesh insertion with traditional colporrhaphy for treatment of anterior vaginal wall prolapse.This is a randomized controlled trial in which women with advanced anterior vaginal wall prolapse, at least stage II with Ba a parts per thousand yenaEuro parts per thousand+1 cm according to the Pelvic Organ Prolapse Quantification (POP-Q) classification, were randomly assigned to have either anterior colporrhaphy (n = 39) or repair using trocar-guided transvaginal mesh (n = 40). the primary outcome was objective cure rate of the anterior compartment (point Ba) assessed at the 12-month follow-up visit, with stages 0 and I defined as anatomical success. Secondary outcomes included quantification of other vaginal compartments (POP-Q points), comparison of quality of life by the prolapse quality of life (P-QOL) questionnaire, and complication rate between the groups after 1 year. Study power was fixed as 80 % with 5 % cutoff point (p < 0.05) for statistical significance.The groups were similar regarding demographic and clinical preoperative parameters. Anatomical success rates for colporrhaphy and repair with mesh placement groups were 56.4 vs 82.5 % (95 % confidence interval 0.068-0.54), respectively, and the difference between the groups was statistically significant (p = 0.018). Similar total complication rates were observed in both groups, with tape exposure observed in 5 % of the patients. There was a significant improvement in all P-QOL domains as a result of both procedures (p < 0.001), but they were not distinct between groups (p > 0.05).Trocar-guided transvaginal synthetic mesh for advanced anterior POP repair is associated with a higher anatomical success rate for the anterior compartment compared with traditional colporrhaphy. Quality of life equally improved after both techniques. However, the trial failed to detect differences in P-QOL scores and complication rates between the groups.
Resumo:
I examine the positive and negative features of synthetic biology (‘SynBio’) from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a ‘precautionary’ approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. The segmentation is performed by three "copies" of the BCS and FCS, of small, medium, and large scales, wherein the "short-range" and "long-range" interactions within each scale occur over smaller or larger distances, corresponding to the size of the early filters of each scale. A diffusive filling-in operation within the segmented regions at each scale produces coherent surface representations. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.
Resumo:
An improved Boundary Contour System (BCS) and Feature Contour System (FCS) neural network model of preattentive vision is applied to two large images containing range data gathered by a synthetic aperture radar (SAR) sensor. The goal of processing is to make structures such as motor vehicles, roads, or buildings more salient and more interpretable to human observers than they are in the original imagery. Early processing by shunting center-surround networks compresses signal dynamic range and performs local contrast enhancement. Subsequent processing by filters sensitive to oriented contrast, including short-range competition and long-range cooperation, segments the image into regions. Finally, a diffusive filling-in operation within the segmented regions produces coherent visible structures. The combination of BCS and FCS helps to locate and enhance structure over regions of many pixels, without the resulting blur characteristic of approaches based on low spatial frequency filtering alone.