996 resultados para Subduction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated high temperature Mo isotope fractionation in a hydrous supra-subduction volcano-plutonic system (Kos, Aegean Arc, Greece) in order to address the debate on the δ98/95Mo variability of the continental crust. In this igneous system, where differentiation is interpreted to be dominated by fractional crystallization, bulk rock data from olivine basalt to dacite show δ98/95Mo ratios increasing from +0.3 to +0.6‰ along with Mo concentrations increasing from 0.8 to 4.1 μg g−1. Data for hornblende and biotite mineral separates reveal the extraction of light Mo into crystallizing silicates, with minimum partition coefficients between hornblende- silicate melt and biotite-silicate melt of 0.6 and 0.4 δ98/95Mo, respectively. Our data document significant Mo isotope fractionation at magmatic temperatures, hence, the igneous contribution to continental runoff is variable, besides probable source-related variability. Based on these results and published data an average continental δ98/95Mo of +0.3 to +0.4‰ can be derived. This signature corresponds more closely to the average of published data of dissolved Mo loads of large rivers than previous estimates and is consistent with an upper limit of δ98/95Mo = 0.4‰ of the Earth's upper crust as derived from the analysis of molybdenites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure–temperature (P–T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750–820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40–45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U–Th–Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas–Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serpentine minerals in natural samples are dominated by lizardite and antigorite. In spite of numerous laboratory experiments, the stability fields of these species remain poorly constrained. This paper presents petrological observations and the Raman spectroscopy and XRD analyses of natural serpentinites from the Alpine paleo-accretionary wedge. Serpentine varieties were identified from a range of metamorphic pressure and temperature conditions from sub-greenschist (P < 4 kbar, T ~ 200–300 °C) to eclogite facies conditions (P > 20 kbar, T > 460 °C) along a subduction geothermal gradient. We use the observed mineral assemblage in natural serpentinite along with the Tmax estimated by Raman spectroscopy of the carbonaceous matter in associated metasediments to constrain the temperature of the lizardite to antigorite transition at high pressures. We show that below 300 °C, lizardite and locally chrysotile are the dominant species in the mesh texture. Between 320 and 390 °C, lizardite is progressively replaced by antigorite at the grain boundaries through dissolution–precipitation processes in the presence of SiO2 enriched fluids and in the cores of the lizardite mesh. Above 390 °C, under high-grade blueschist to eclogite facies conditions, antigorite is the sole stable serpentine mineral until the onset of secondary olivine crystallization at 460 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Stak massif, northern Pakistan, is a newly recognized occurrence of eclogite formed by the subduction of the northern margin of the Indian continent in the northwest Himalaya. Although this unit was extensively retrogressed during the Himalayan collision, records of the high-pressure (HP) event as well as a continuous pressure-temperature (P-T) path were assessed from a single thin section using a new multiequilibrium method. This method uses microprobe X-ray compositional maps of garnet and omphacitic pyroxene followed by calculations of ∼200,000 P-T estimates using appropriate thermobarometers. The Stak eclogite underwent prograde metamorphism, increasing from 650 °C and 2.4 GPa to the peak conditions of 750 °C and 2.5 GPa, then retrogressed to 700–650 °C and 1.6–0.9 GPa under amphibolite-facies conditions. The estimated peak metamorphic conditions and P-T path are similar to those of the Kaghan and Tso Morari high- to ultrahigh-pressure (HP-UHP) massifs. We propose that these three massifs define a large HP to UHP province in the northwest Himalaya, comparable to the Dabie-Sulu province in China and the Western Gneiss Region in Norway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction- and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP–LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide–Tauride continental block (namely the Afyon Zone, the Ören Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica 40Ar–39Ar geochronology), and where possible are combined with P–T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP–LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67–62 Ma. Early retrograde stages in the Ören Unit are dated to 63–59 Ma. In the Kurudere–Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Ören Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere–Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP–LT metamorphic belts thus formed: the northernmost Tavşanlı Zone (c. 88–82 Ma), the Ören–Afyon Zone (between 70 and 65 Ma), and the Kurudere–Nebiler Unit (c. 52–45 Ma). The southward younging trend of the HP–LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93–90 and c. 35 Ma. After the accretion of the Menderes–Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address under what conditions a magma generated by partial melting at 100 km depth in the mantle wedge above a subduction zone can reach the crust in dikes before stalling. We also address under what conditions primitive basaltic magma (Mg # >60) can be delivered from this depth to the crust. We employ linear elastic fracture mechanics with magma solidification theory and perform a parametric sensitivity analysis. All dikes are initiated at a depth of 100 km in the thermal core of the wedge, and the Moho is fixed at 35 km depth. We consider a range of melt solidus temperatures (800-1100 degrees C), viscosities (10-100 Pa s), and densities (2400-2700 kg m(-3)). We also consider a range of host rock fracture toughness values (50-300 MPa m(1/2)) and dike lengths (2-5 km) and two thermal structures for the mantle wedge (1260 and 1400 degrees C at 100 km depth and 760 and 900 degrees C at 35 km depth). For the given parameter space, many dikes can reach the Moho in less than a few hundred hours, well within the time constraints provided by U series isotope disequilibria studies. Increasing the temperature in the mantle wedge, or increasing the dike length, allows additional dikes to propagate to the Moho. We conclude that some dikes with vertical lengths near their critical lengths and relatively high solidus temperatures will stall in the mantle before reaching the Moho, and these may be returned by corner flow to depths where they can melt under hydrous conditions. Thus, a chemical signature in arc lavas suggesting partial melting of slab basalts may be partly influenced by these recycled dikes. Alternatively, dikes with lengths well above their critical lengths can easily deliver primitive magmas to the crust, particularly if the mantle wedge is relatively hot. Dike transport remains a viable primary mechanism of magma ascent in convergent tectonic settings, but the potential for less rapid mechanisms making an important contribution increases as the mantle temperature at the Moho approaches the solidus temperature of the magma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from >550°C to <325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T<350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T<100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of >20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional numerical models are used to investigate the mechanical evolution of the southern Alaskan plate corner where the Yakutat and the Pacific plates converge on the North American plate. The evolving model plate boundary consists of Convergent, Lateral, and Subduction subboundaries with flow separation of incoming material into upward or downward trajectories forming dual, nonlinear advective thermal/mechanical anomalies that fix the position of major subaerial mountain belts. The model convergent subboundary evolves into two teleconnected orogens: Inlet and Outlet orogens form at locations that correspond with the St. Elias and the Central Alaska Range, respectively, linked to the East by the Lateral boundary. Basins form parallel to the orogens in response to the downward component of velocity associated with subduction. Strain along the Lateral subboundary varies as a function of orogen rheology and magnitude and distribution of erosion. Strain-dependent shear resistance of the plate boundary associated with the shallow subduction zone controls the position of the Inlet orogen. The linkages among these plate boundaries display maximum shear strain rates in the horizontal and vertical planes where the Lateral subboundary joins the Inlet and Outlet orogens. The location of the strain maxima shifts with time as the separation of the Inlet and Outlet orogens increases. The spatiotemporal predictions of the model are consistent with observed exhumation histories deduced from thermochronology, as well as stratigraphic studies of synorogenic deposits. In addition, the complex structural evolution of the St Elias region is broadly consistent with the predicted strain field evolution. Citation: Koons, P. O., B. P. Hooks, T. Pavlis, P. Upton, and A. D. Barker (2010), Three-dimensional mechanics of Yakutat convergence in the southern Alaskan plate corner, Tectonics, 29, TC4008, doi: 10.1029/2009TC002463.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A swarm of minette and melanephelinite dikes is exposed over 2500 km2 in and near the Wasatch Plateau, central Utah, along the western margin of the Colorado Plateaus in the transition zone with the Basin and Range province. To date, 110 vertical dikes in 25 dike sets have been recognized. Strikes shift from about N80-degrees-W for 24 Ma dikes, to about N60-degrees-W for 18 Ma, to due north for 8-7 m.y. These orientations are consistent with a shift from east-west Oligocene compression associated with subduction to east-west late Miocene crustal extension. Minettes are the most common rock type; mica-rich minette and mica-bearing melanephelinite occurs in 24 Ma dikes, whereas more ordinary minette is found in 8-7 Ma dikes. One melanephelinite dike is 18 Ma. These mafic alkaline rocks are transitional to one another in modal and major element composition but have distinctive trace element patterns and isotopic compositions; they appear to have crystallized from primitive magmas. Major, trace element, and Nd-Sr isotopic data indicate that melanephelinite, which has similarities to ocean island basalt, was derived from small degree melts of mantle with a chondritic Sm/Nd ratio probably located in the asthenosphere, but it is difficult to rule out a lithospheric source. In contrast, mica-bearing rocks (mica melanephelinite and both types of minette) are more potassic and have trace element patterns with strong Nb-Ta depletions and Sr-Nd isotopic compositions caused by involvement with a component from heterogeneously enriched lithospheric mantle with long-term enrichment of Rb or light rare earth elements (REE) (epsilon Nd as low as - 15 in minette). Light REE enrichment must have occurred anciently in the mid-Proterozoic when the lithosphere was formed and is not a result of Cenozoic subduction processes. After about 25 Ma, foundering of the subducting Farallon plate may have triggered upwelling of warm asthenospheric mantle to the base of the lithosphere. Melanephelinite magma may have separated from the asthenosphere and, while rising through the lithosphere, provided heat for lithospheric magma generation. Varying degrees of interaction between melanephelinite and small potassic melt fractions derived from the lithospheric mantle can explain the gradational character of the melanephelinite to minette suite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the threedimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years ‘‘target’’ simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-tohigh latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied verywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained largescale observations of this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase assemblages and compositions in a K-bearing lherzolite + H2O system are determined between 4 and 6 GPa and 850–1200 °C, and the melting reactions occurring at subarc depth in subduction zones are constrained. Experiments were performed on a rocking multi-anvil apparatus. The experiments had around 16 wt% water content, and hydrous melt or aqueous fluid was segregated and trapped in a diamond aggregate layer. The compositions of the aqueous fluid and hydrous melt phases were measured using the cryogenic LA-ICP-MS technique. The residual lherzolite consists of olivine, orthopyroxene, clinopyroxene, and garnet, while diamond (C) is assumed to be inert. Hydrous and alkali-rich minerals were absent from the run products due to preferred dissolution of K2O (and Na2O) to the aqueous fluid/hydrous melt phases. The role of phlogopite in melting relations is, thus, controlled by the water content in the system: at the water content of around 16 wt% used here, phlogopite is unstable and thus does not participate in melting reactions. The water-saturated solidus, i.e., the first appearance of hydrous melt in the K–lherzolite composition, is located between 900 and 1000 °C at 4 GPa and between 1000 and 1100 °C at 5 and 6 GPa. Compositional jumps between hydrous melt and aqueous fluid at the solidus include a significant increase in the total dissolved solids load. All melts/fluids are peralkaline and calcium-rich. The melting reactions at the solidus are peritectic, as olivine, clinopyroxene, garnet, and H2O are consumed to generate hydrous melt plus orthopyroxene. Our fluid/melt compositional data demonstrate that the water-saturated hybrid peridotite solidus lies above 1000 °C at depths greater than 150 km and that the second critical endpoint is not reached at 6 GPa for a K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–Cr2O3(–TiO2) peridotite composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing bservation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14°C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Semail ophiolite in Oman is capped by up to 2 km of basaltic-andesitic lavas that host copper-dominant, Cyprus-type, volcanogenic massive sulfide (VMS) deposits. This study identifies multiple volcanostratigraphic horizons on which the deposits are situated, based on characterization of footwall and hanging-wall lavas from 16 deposits or deposit clusters. Comparison of field and petrographic features, compositions of igneous clinopyroxenes, and whole-rock geochemical signatures permits classification of the lavas within a modified version of the established regional volcanostratigraphy. Four extrusive units host deposits: Geotimes (earliest), Lasail, Alley, and Boninitic Alley (latest). The latter was previously known only at few localities, but this study reveals its regional extent and significance as a host for VMS deposits. The Geotimes and Lasail units represent Late Cretaceous, ocean spreading ridge and related off-axis volcanic environments, respectively. The Alley and Boninitic Alley units represent younger, subduction-related volcanism prior to Coniacian-Santonian obduction of the ophiolite. Our results show that VMS deposits occur on or near the Geotimes/Lasail and Geotimes/Alley contacts as well as entirely within the Geotimes, Lasail, Alley, and Boninitic Alley units. Highest Cu grades tend to occur in deposits lying on or within the Geotimes, whereas highest Au grades occur in deposits within the Boninitic Alley. In contrast to earlier studies, we conclude that essentially every horizon marking a hiatus in lava deposition in the Semail ophiolite, i.e., contacts between the four major eruptive units, and umbers and sedimentary chert layers within the units, has exploration potential for Cu-Au VMS deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressure–Temperature–time (P–T–t) estimates of the syn-kinematic strain at the peak-pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan-de-Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn-kinematically in a shear zone indicating top-to-the-N motion. By combining X-ray mapping with multi-equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–T–t estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.