924 resultados para Subclinical inflammation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcrystals associated with joint diseases, namely monosodium urate, calcium pyrophosphate and basic calcium phosphate, can be considered as 'danger signals' to the innate immune system and provoke inflammation through inflammasome-dependent as well as inflammasome-independent pathways. Direct crystal membrane interactions can also lead to cell activation. The result is the generation of IL-1β and other pro-inflammatory cytokines. The primacy of IL-1β in the case of gouty inflammation has been demonstrated by the efficacy of IL-1 inhibitors in clinical studies. These findings may be relevant to other diseases where crystal formation is found, such as OA and atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND--Oesophageal motor abnormalities have been reported in alcoholism. AIM--To investigate the effects of chronic alcoholism and its withdrawal on oesophageal disease. PATIENTS--23 chronic alcoholic patients (20 men and three women; mean age 43, range 23 to 54). METHODS--Endoscopy, manometry, and 24 hour pH monitoring 7-10 days and six months after ethanol withdrawal. Tests for autonomic and peripheral neuropathy were also performed. Motility and pH tracings were compared with those of age and sex matched control groups: healthy volunteers, nutcracker oesophagus, and gastro-oesophageal reflux disease. RESULTS--14 (61%) alcoholic patients had reflux symptoms, and endoscopy with biopsy showed oesophageal inflammation in 10 patients. One patient had an asymptomatic squamous cell carcinoma. Oesophageal motility studies in the alcoholic patients showed that peristaltic amplitude in the middle third was > 150 mm Hg (95th percentile (P95) of healthy controls) in 13 (57%), the ratio lower/ middle amplitude was < 0.9 in 15 (65%) (> 0.9 in all control groups), and the lower oesophageal sphincter was hypertensive (> 23.4 mm Hg, P95 of healthy controls) in 13 (57%). All three abnormalities were present in five (22%). Abnormal reflux (per cent reflux time > 2.9, P95 of healthy controls) was shown in 12 (52%) alcoholic patients, and was unrelated to peristaltic dysfunction. Subclinical neuropathy in 10 patients did not effect oesophageal abnormalities. Oesophageal motility abnormalities persisted at six months in six patients with ongoing alcoholism, whereas they reverted towards normal in 13 who remained abstinent; reflux, however, was unaffected. CONCLUSIONS--Oesophageal peristaltic dysfunction and reflux are frequent in alcoholism. High amplitude contractions in the middle third of the oesophagus seem to be a marker of excessive alcohol consumption, and tend to improve with abstinence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In rheumatoid arthritis (RA), non-professional antigen presenting cells (APCs) such as fi broblast-like synoviocytes (FLS) can express MHC class II (MHCII) molecules and function as non-professional APCs in vitro.Objective To examine the regulation of MHCII expression in FLS and to investigate the role of FLS as non-professional APCs in collagen-induced arthritis (CIA). Methods Expression of MHCII, CIITA and Ciita isoforms pI, pIII and pIV was examined by RT-qPCR, immunohistochemistry and fl ow cytometry in human synovial tissues, arthritic mouse joints and human as well as mouse FLS. CIA was induced in mice knockout for the isoform IV of Ciita (pIV-/-), in pIV-/- mice transgenic for CIITA in the thymus (pIV-/- K14 CIITA) and in control littermates in the DBA/1 background by immunising with bovine collagen type II (CII) in complete Freund's adjuvant.Results HLA-DRA, total CIITA and CIITA pIII mRNA levels were signifi cantly increased in the synovial tissues from RA compared to osteoarthritis patients. Human FLS expressed surface MHCII via CIITA pIII and pIV, while MHCII expression in murine FLS was entirely mediated by pIV. pIV-/- mice lacked both inducible MHCII expression on non-professional APCs including FLS, and in the thymic cortex. The thymic defect in pIV-/- mice impaired CD4+ positive selection, thus protecting pIV-/- mice from CIA by preventing CD4+ T cells immune responses against CII and blocking the release of IFN-γ and IL-17 in ex vivo stimulated lymph node cells. The production of T dependent, arthritogenic anti-CII antibodies was also impaired in pIV-/- mice. A normal thymic expression of MHCII and CD4+ T cell repertoire was obtained in pIV-/- K14 CIITA Tg mice. Immune responses against CII were restored in pIV-/- K14 CIITA Tg mice, as well as the arthritis incidence and clinical severity despite the lack of MHCII expression by mouse FLS. At histology, infl ammation andneutrophils infi ltration scores were not reduced in pIV-/- K14 CIITA Tg mice, while the bone erosion score was signifi cantly lower than in controls.Conclusion Over expression of MHCII is tightly correlated with CIITA pIII in the arthritic human synovium. MHCII is induced via CIITA pIII and pIV in human FLS. In the mouse, MHCII expression in the thymic cortex and in FLS is strictly dependent upon Ciita pIV. The lack of Ciita pIV in the periphery of pIV-/- K14 CIITA Tg mice lowered the bone erosion score but did not signifi cantly protect from infl ammation and autoimmune responses in CIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implantation of a phakic iris claw intraocular lens is a common, effective and safe procedure to correct high myopia, hyperopia and astigmatism [2]. Due to the nature of its fixation on the iris using claws, chronic irritation and inflammation have remained a major concern with the Artisan® lens since its market introduction in 1998. Following iris claw implantation, monitoring of postoperative inflammation is mandatory [4][7]. Usually, signs of inflammation can be detected in the anterior chamber during the early postoperative period. We present here the first case of late-onset inflammation after implantation of an iris claw lens triggered by an iris varix. The iris varix is a rare benign iris vascular abnormality, with a low prevalence as a solitary primary lesion in the general population and little is known about its clinical characteristics [1][5][6]. This report shows that an iris varix could be a cause of a late onset and chronic inflammation after phakic Artisan® lens implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Inflammation has evolved as a mechanism to defend the body against invading microorganisms and to respond to injury. It requires the coordinated response of a large number of cell types from the whole organism in a time- and space-dependent fashion. This coordination involves several cell-cell communication mechanisms. Exchange of humoral mediators such as cytokines is a major one. Moreover, direct contact between cells happens and plays a primordial role, for example when macrophages present antigens to lymphocytes. Contact between endothelial cells and leucocytes occurs when the latter cross the blood vessel barrier and transmigrate to the inflammatory site. A particular way by which cells communicate with each other in the course of inflammation, which at this time starts to gain attention, is the intercellular communication mediated by gap junctions. Gap junctions are channels providing a direct pathway (i.e. without transit through the extracellular space) for the diffusion of small molecules between adjacent cells. This process is known as gap junctional intercellular communication (GJIC). The general aim of this thesis was to study a possible involvement of GJIC in the pathophysiology of inflammation. A first part of the work was dedicated to study the implication of GJIC in the modification of vascular endothelial function by inflammation. In a second part, we were interested in the possible role of GJIC in the transmigration of neutrophil polymorphonuclear leucocytes through the endothelium. The main positive finding of this work is that acute inflammation preferentially modulates the expression of connexin 40 (Cx40), a gap junction protein specifically expressed in vascular endothelium. The modulation could be towards overexpression (aortic endothelium of septic rats) or towards downregulation (acutely inflamed mouse lung). We put a lot of efforts in search of possible functions of these modulations, in two directions: a potential protective role of Cx40 increased expression against sepsis-induced endothelial dysfunction, and a facilitating role of Cx40 decreased expression in neutrophil transmigration. To pursue both directions, it seemed logical to study the impact of Cx40 deletion using knock-out mice. Concerning the potential protective role of Cx40 overexpression we encountered a roadblock as we observed, in the aorta, a Cx40 downregulation in wild type mouse whereas Cx40 was upregulated in the rat. Regarding the second direction and using an in vivo approach, we observed that pulmonary neutrophil transmigration was not affected by the genetic deletion of Cx40. In spite of their negative nature, these results are the very first ones regarding the potential implication of GJIC concerning leucocyte transmigration in vivo. Because this process involves such tight cell-cell physical contacts, the hypothesis for a role of GJIC remains attractive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) patients often present with malnutrition which may partly be due to increased resting energy expenditure (REE) secondary to inflammation. Both REE and tumour necrosis factor-alpha (TNF-alpha), as other markers of inflammation, are elevated during respiratory exacerbations and decrease after antibiotic treatment. However, the effect of antibiotic therapy on REE and inflammation in patients without respiratory exacerbation is not known. The aim of our study was to determine the effect of such an elective antibiotic therapy on REE, TNF-alpha, and other serum markers of inflammation. Twelve CF patients 5F/7M, age 15.9 +/- 6.1 years, weight for height ratio 89 +/- 8% without clinically obvious exacerbation and treated by intravenous antibiotics were studied. Both before (D0) and after (D14) treatment, pulmonary function tests were performed. REE was measured by indirect calorimetry and blood taken to measure inflammation parameters. Body weight increased by 1.1 kg from D0 to D14 (P < 0.001), composed of 0.3 kg fat mass and 0.8 kg fat-free mass (FFM). The forced expiratory volume at 1 s increased from 43 +/- 15% of predicted at D0 to 51 +/- 15% of predicted at D14 (P < 0.01). Mean REE was 41.1 +/- 7.6 kcal/kg FFM per day at D0 and did not change significantly at D14 (40.6 +/- 8.5 kcal/kg FFM per day). Serum markers of inflammation decreased from D0 to D14: C-reactive protein 17 +/- 17 mg/l to 4 +/- 7 mg/l (P < 0.05), elastase 62 +/- 29 microg/l to 45 +/- 18 microg/l (P < 0.02), orosomucoid acid 1.25 +/- 0.11 g/l to 0.80 +/- 0.15 g/l (P < 0.001), and TNF-alpha 37 +/- 14 pg/ml to 29 +/- 6 pg/ml (P = 0.05). Individual values showed a correlation between changes in REE and in TNF-alpha (P < 0.02). The contribution of inflammation to energy expenditure is possible but appears to be minimal in cystic fibrosis patients treated by antibiotics on a regular basis in the absence of clinically obvious exacerbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 80-year-old male patient experienced recently diagnosed swelling of the limbal conjunctiva. In his clinical history were found cataract surgery on the right eye 3 months before, chronic open angle glaucoma effectively treated by local eye drops, treated systemic hypertension and hypercholesterolemia. On ophthalmic examination, a conjunctival mass was present in the inferior lateral conjunctival quadrant next to the limbus, with numerous vessels visible at its top. Treatment with topical corticosteroids failed to obtain regression, but decreased the local inflammatory signs. The persistence of the mass led to its surgical excision under local anesthesia. Histopathology found a subepithelial accumulation of modified collagen bundles typical of elastotic degeneration. Capillary vessels were seen in the superficial subepithelial area, attesting to the high degree of vascularization observed clinically. The final diagnosis was a pinguecula, which was not exactly located on the horizontal meridian area as it is usual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND--Oesophageal motor abnormalities have been reported in alcoholism. AIM--To investigate the effects of chronic alcoholism and its withdrawal on oesophageal disease. PATIENTS--23 chronic alcoholic patients (20 men and three women; mean age 43, range 23 to 54). METHODS--Endoscopy, manometry, and 24 hour pH monitoring 7-10 days and six months after ethanol withdrawal. Tests for autonomic and peripheral neuropathy were also performed. Motility and pH tracings were compared with those of age and sex matched control groups: healthy volunteers, nutcracker oesophagus, and gastro-oesophageal reflux disease. RESULTS--14 (61%) alcoholic patients had reflux symptoms, and endoscopy with biopsy showed oesophageal inflammation in 10 patients. One patient had an asymptomatic squamous cell carcinoma. Oesophageal motility studies in the alcoholic patients showed that peristaltic amplitude in the middle third was > 150 mm Hg (95th percentile (P95) of healthy controls) in 13 (57%), the ratio lower/ middle amplitude was < 0.9 in 15 (65%) (> 0.9 in all control groups), and the lower oesophageal sphincter was hypertensive (> 23.4 mm Hg, P95 of healthy controls) in 13 (57%). All three abnormalities were present in five (22%). Abnormal reflux (per cent reflux time > 2.9, P95 of healthy controls) was shown in 12 (52%) alcoholic patients, and was unrelated to peristaltic dysfunction. Subclinical neuropathy in 10 patients did not effect oesophageal abnormalities. Oesophageal motility abnormalities persisted at six months in six patients with ongoing alcoholism, whereas they reverted towards normal in 13 who remained abstinent; reflux, however, was unaffected. CONCLUSIONS--Oesophageal peristaltic dysfunction and reflux are frequent in alcoholism. High amplitude contractions in the middle third of the oesophagus seem to be a marker of excessive alcohol consumption, and tend to improve with abstinence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immediate response to skin injury is the release of inflammatory signals. It is shown here, by use of cultures of primary keratinocytes from wild-type and PPAR beta/delta(-/-) mice, that such signals including TNF-alpha and IFN-gamma, induce keratinocyte differentiation. This cytokine-dependent cell differentiation pathway requires up-regulation of the PPAR beta/delta gene via the stress-associated kinase cascade, which targets an AP-1 site in the PPAR beta/delta promoter. In addition, the pro-inflammatory cytokines also initiate the production of endogenous PPAR beta/delta ligands, which are essential for PPAR beta/delta activation and action. Activated PPAR beta/delta regulates the expression of genes associated with apoptosis resulting in an increased resistance of cultured keratinocytes to cell death. This effect is also observed in vivo during wound healing after an injury, as shown in dorsal skin of PPAR beta/delta(+/+) and PPAR beta/delta(+/-) mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corneal integrity and transparency are indispensable for good vision. Cornea homeostasis is entirely dependent upon corneal stem cells, which are required for complex wound-healing processes that restore corneal integrity following epithelial damage. Here, we found that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is highly expressed in the human holoclone-type corneal epithelial stem cell population and sporadically expressed in the basal cells of ocular-surface epithelium. In murine models, LRIG1 regulated corneal epithelial cell fate during wound repair. Deletion of Lrig1 resulted in impaired stem cell recruitment following injury and promoted a cell-fate switch from transparent epithelium to keratinized skin-like epidermis, which led to corneal blindness. In addition, we determined that LRIG1 is a negative regulator of the STAT3-dependent inflammatory pathway. Inhibition of STAT3 in corneas of Lrig1-/- mice rescued pathological phenotypes and prevented corneal opacity. Additionally, transgenic mice that expressed a constitutively active form of STAT3 in the corneal epithelium had abnormal features, including corneal plaques and neovascularization similar to that found in Lrig1-/- mice. Bone marrow chimera experiments indicated that LRIG1 also coordinates the function of bone marrow-derived inflammatory cells. Together, our data indicate that LRIG1 orchestrates corneal-tissue transparency and cell fate during repair, and identify LRIG1 as a key regulator of tissue homeostasis.