929 resultados para Structural effects
Resumo:
Fatigue life assessment of weldedstructures is commonly based on the nominal stress method, but more flexible and accurate methods have been introduced. In general, the assessment accuracy is improved as more localized information about the weld is incorporated. The structural hot spot stress method includes the influence of macro geometric effects and structural discontinuities on the design stress but excludes the local features of the weld. In this thesis, the limitations of the structural hot spot stress method are discussed and a modified structural stress method with improved accuracy is developed and verified for selected welded details. The fatigue life of structures in the as-welded state consists mainly of crack growth from pre-existing cracks or defects. Crack growth rate depends on crack geometry and the stress state on the crack face plane. This means that the stress level and shape of the stress distribution in the assumed crack path governs thetotal fatigue life. In many structural details the stress distribution is similar and adequate fatigue life estimates can be obtained just by adjusting the stress level based on a single stress value, i.e., the structural hot spot stress. There are, however, cases for which the structural stress approach is less appropriate because the stress distribution differs significantly from the more common cases. Plate edge attachments and plates on elastic foundations are some examples of structures with this type of stress distribution. The importance of fillet weld size and weld load variation on the stress distribution is another central topic in this thesis. Structural hot spot stress determination is generally based on a procedure that involves extrapolation of plate surface stresses. Other possibilities for determining the structural hot spot stress is to extrapolate stresses through the thickness at the weld toe or to use Dong's method which includes through-thickness extrapolation at some distance from the weld toe. Both of these latter methods are less sensitive to the FE mesh used. Structural stress based on surface extrapolation is sensitive to the extrapolation points selected and to the FE mesh used near these points. Rules for proper meshing, however, are well defined and not difficult to apply. To improve the accuracy of the traditional structural hot spot stress, a multi-linear stress distribution is introduced. The magnitude of the weld toe stress after linearization is dependent on the weld size, weld load and plate thickness. Simple equations have been derived by comparing assessment results based on the local linear stress distribution and LEFM based calculations. The proposed method is called the modified structural stress method (MSHS) since the structural hot spot stress (SHS) value is corrected using information on weld size andweld load. The correction procedure is verified using fatigue test results found in the literature. Also, a test case was conducted comparing the proposed method with other local fatigue assessment methods.
Resumo:
The complexity of the connexions within an economic system can only be reliably reflected in academic research if powerful methods are used. Researchers have used Structural Path Analysis (SPA) to capture not only the linkages within the production system but also the propagation of the effects into different channels of impacts. However, the SPA literature has restricted itself to showing the relations among sectors of production, while the connections between these sectors and final consumption have attracted little attention. In order to consider the complete set of channels involved, in this paper we propose a structural path method that endogenously incorporates not only sectors of production but also the final consumption of the economy. The empirical application comprises water usages, and analyses the dissemination of exogenous impacts into various channels of water consumption. The results show that the responsibility for water stress is imputed to different sectors and depends on the hypothesis used for the role played by final consumption in the model. This highlights the importance of consumers’ decisions in the determination of ecological impacts. Keywords: Input-Output Analysis, Structural Path Analysis, Final Consumption, Water uses.
Resumo:
The impact of personality and job characteristics on parental rearing styles was compared in 353 employees. Hypotheses concerning the relationships between personality and job variables were formulated in accordance with findings in past research and the Belsky’s model (1984). Structural equation nested models showed that Aggression-hostility, Sociability and job Demand were predictive of Rejection and Emotional Warmth parenting styles, providing support for some of the hypothesized relationships. The findings suggest a well-balanced association of personality variables with both parenting styles: Aggression-Hostility was positively related to Rejection and negatively to Emotional Warmth, whereas Sociability was positively related to Emotional Warmth and negatively related to Rejection. Personality dimensions explained a higher amount of variance in observed parenting styles. However, a model that considered both, personality and job dimensions as antecedent variables of parenting was the best representation of observed data, as both systems play a role in the prediction of parenting behavior.
Resumo:
The loss of autonomy at advanced ages is not only associated with ageing, but also with the characteristics of the physical and social environment. Recent investigations have shown that social networks, social engagement and participation act like predictors of disability among the elderly. The aim of this study is to determine whether social networks are related to the development and progression of disability in the early years of old age. The source of data is the first wave of the survey "Processes of Vulnerability among Spanish Elderly", carried out in 2005 to a sample of 1 244 individuals. The population object of study is the cohort aged 70 to 74 years in metropolitan areas (Madrid and Barcelona) and not institutionalized. Disability is measured by the development of basic activities of daily life (ADL), and instrumental activities of daily life (IADL). The structural aspects of the social relationships are measured through the diversity of social networks and participation. We used the social network index (SNI). For each point over the SNI, the risk of developing any type of disability decreased by 49% (HR = 0.51, 95%CI = 0.31-0.82). The SNI was a decisive factor in all forecasting models constructed with some hazard ratios (HR) that ranged from 0.29 (95%CI = 0.14-0.59) in the first model to 0.43 (95%CI 0.20-0.90) in the full model. The results of the present study showed a strong association between an active social life, emotional support provided by friends and confidents and disability. These findings suggest a protective effect of social networks on disability. Also, these results indicate that some family and emotional ties have a significant effect on both the prevalence and the incidence of disability.
Resumo:
Background: Alcohol-related expectancies are especially relevant in relation to alcohol consumption during adolescence. The main aim of this study was to adapt and translate into Spanish (Castilian) the Expectancy Questionnaire (EQ), and to study its psychometric properties in adolescents. Method: The sample was composed of 514 adolescents (57.20% female, mean age = 15.21; SD = .63) who completed the EQ and the alcohol consumption questionnaire AIS-UJI. Results: Confi rmatory factor analysis indicated that an eight-factor model, grouped into two general factors of positive and negative expectancies, had acceptable fi t indices. Cronbach’s alphas ranged from .75 to .96. Finally, the structural equation model showed that positive expectancies were positively related to alcohol use, whereas negative expectancies were negatively related to drinking. Conclusions: Results showed that the Spanish version of the EQ for adolescents is a valid and reliable questionnaire to measure expectancies about alcohol effects.
Resumo:
We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically driven devices using Si-ncs or Si-excess mediated EL.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging to measure the effects of 2 weeks of training with a Go/NoGo task specifically designed to improve frontal top-down IC mechanisms. The training-induced behavioral improvements were accompanied by a decrease in neural activity to inhibition trials within the right pars opercularis and triangularis, and in the left pars orbitalis of the inferior frontal gyri. Analyses of changes in brain anatomy induced by the IC training revealed increases in grey matter volume in the right pars orbitalis and modulations of white matter microstructure in the right pars triangularis. The task-specificity of the effects of training was confirmed by an absence of change in neural activity to a control working memory task. Our combined anatomical and functional findings indicate that differential patterns of functional and structural plasticity between and within inferior frontal gyri enhanced the speed of top-down inhibition processes and in turn IC proficiency. The results suggest that training-based interventions might help overcoming the anatomic and functional deficits of inferior frontal gyri manifesting in inhibition-related clinical conditions. More generally, we demonstrate how multimodal neuroimaging investigations of training-induced neuroplasticity enable revealing novel anatomo-functional dissociations within frontal executive brain networks. Hum Brain Mapp 36:2527-2543, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
The present study analyses the relationship between Anxiety and Impulsivity personality factors and emotions, by controlling for country and sex effects in a sample of Spanish and Swiss university students. Emotions were assessed through the International Affective Picture System (IAPS) of pictures (valence/arousal) using the Self-Assessment Manikin (SAM) procedure. The mixed valence/arousal groups' pictures were formed according to Tok, Koyuncu, Dural and Catikkas procedure (2010). Results showed that females scored significantly higher in Anxiety factor and men in Impulsivity factor in both countries. The effect of sex was highly significant for Anxiety (ŋ2: 0.12), but there was no significant effect of the country. Also, females obtained higher scores in the four valence/arousal pictures groups. The sex effect was particularly robust for negative valence-high arousal (ŋ2: 0.13). Impulsivity correlated with high ratings of positive valence-high arousal while Anxiety correlated with high ratings of negative valence-high arousal and with high ratings of negative valence-low arousal in both sexes, although scores were higher for females. Structural Equation Modelling confirmed these relationships. Nevertheless, Anxiety and Impulsivity explained only a small amount of the accounted variance of the self-reported valence and arousal of the pictures.
Resumo:
The antifungal "paradoxical effect" has been described as the reversal of growth inhibition at high doses of echinocandins, most usually caspofungin. This microbiological effect appears to be a cellular compensatory response to cell wall damage, resulting in alteration of cell wall content and structure as well as fungal morphology and growth. In vitro studies demonstrate this reproducible effect in a certain percentage of fungal isolates, but animal model and clinical studies are less consistent. The calcineurin and Hsp90 cell signaling pathways appear to play a major role in regulating these cellular and structural changes. Regardless of the clinical relevance of this paradoxical growth effect, understanding the specific actions of echinocandins is paramount to optimizing their use at either standard or higher dosing schemes, as well as developing future improvements in our antifungal arsenal.
Resumo:
OBJECTIVE: Experimental evidence suggests that aldosterone directly contributes to organ damage by promoting cell growth, fibrosis, and inflammation. Based on these premises, this work aimed to assess the glomerular effects of aldosterone, alone and in combination with salt. METHODS: After undergoing uninephrectomy, 75 rats were allocated to five groups: control, salt diet, aldosterone, aldosterone + salt diet, aldosterone + salt diet and eplerenone, and they were all studied for four weeks. We focused on glomerular structural, functional, and molecular changes, including slit diaphragm components, local renin-angiotensin system activation, as well as pro-oxidative and profibrotic changes. RESULTS: Aldosterone significantly increased systolic blood pressure, led to glomerular hypertrophy, mesangial expansion, and it significantly increased the glomerular permeability to albumin and the albumin excretion rate, indicating the presence of glomerular damage. These effects were worsened by adding salt to aldosterone, while they were reduced by eplerenone. Aldosterone-induced glomerular damage was associated with glomerular angiotensin-converting enzyme (ACE) 2 downregulation, with ACE/ACE2 ratio increase, ANP decrease, as well as with glomerular pro-oxidative and profibrotic changes. CONCLUSIONS: Aldosterone damages not only the structure but also the function of the glomerulus. ACE/ACE2 upregulation, ACE2 and ANP downregulation, and pro-oxidative and profibrotic changes are possible mechanisms accounting for aldosterone-induced glomerular injury.
Resumo:
Many of the reproductive disorders that emerge in adulthood have their origin during fetal development. Numerous studies have demonstrated that exposure to endocrine disrupting chemicals can permanently affect the reproductive health of experimental animals. In mammals, male sexual differentiation and development are androgen-dependent processes. In rat, the critical programming window for masculinization occurs between embryonic days (EDs) 15.5 and 19.5. Disorders in sex steroid balance during fetal life can disturb the development of the male reproductive tract. In addition to the fetal testis, the adrenal cortex starts to produce steroid hormones before birth. Glucocorticoids produced by the adrenal cortex are essential for preparing the fetus for birth. In the present study, the effects of exposure to endocrine disrupters on fetal male rat testicular and adrenal development were investigated. To differentiate the systemic and direct testicular effects of endocrine disrupters, both in vivo and in vitro experiments were performed. The present study also clarified the role of desert hedgehog signalling (Dhh) in the development of the testis. The results indicate that endocrine disrupters, diethylstilbestrol (DES) and flutamide, are able to induce rapid steroidogenic changes in fetal rat testis under in vitro conditions. Although in utero exposure to these chemicals did not show overt effects in fetal testis, they can induce permanent changes in the developing testis and accessory sex organs later in life. We also reported that exposure to antiandrogens can interfere with testicular Dhh signalling and result in impaired differentiation of the fetal Leydig cells and subsequently lead to abnormal testicular development and sexual differentiation. In utero exposure to tetrachlorodibenzo-p-dioxin (TCDD) caused direct testicular and pituitary effects on the fetal male rat but with different dose responses. In a study in which the effects of developmental exposure to environmental antiandrogens, di-isononylphthalate and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p’-DDE), on fetal male rat steroidogenesis were investigated, chemicals did not down-regulate testicular or adrenal steroid hormone synthesis or production in 19.5-day-old fetal rats. However, p,p’-DDE-treatment caused clear histological and ultrastructural changes in the prenatal testis and adrenal gland. These structural alterations can disturb the development and function of fetal testis and adrenal gland that may become evident later in life. Exposure to endocrine disrupters during fetal life can cause morphological abnormalities and alter steroid hormone production by fetal rat Leydig cells and adrenocortical cells. These changes may contribute to the maldevelopment of the testis and the adrenal gland. The present study highlights the importance of the fetal period as a sensitive window for endocrine disruption.
Resumo:
This is a study of team social networks, their antecedents and outcomes. In focusing attention on the structural configuration of the team this research contributes to a new wave of thinking concerning group social capital. The research site was a random sample of Finnish work organisations. The data consisted of 499 employees in 76 teams representing 48 different organisations. A systematic literature review and quantitative methods were used in conducting the research: the former primarily to establish the current theoretical position on the relationships among the variables and the latter to test these relationships. Social network analysis was the primary method used in identifying the social-network relations among the work-team members. The first and key contribution of this study is that it relates the structuralnetwork properties of work teams to behavioural outcomes, attitudinal outcomes and, ultimately, team performance. Moreover, it shows that addressing attitudinal outcomes is also important in terms of team performance; attitudinal outcomes (team identity) mediated the relationship between the team’s performance and its social network. The second contribution is that it examines the possible antecedents of the social structure. It is thus one response to Salancik’s (1995) call for a network theory in that it explains why certain network characteristics exist. Itdemonstrates that irrespective of whether or not a team is heterogeneous in terms of age or gender, educational diversity may protect it from centralisation. However, heterogeneity in terms of gender turned out to have a negative impact on density. Thirdly, given the observation that the benefits of (team) networks are typically theorised and modelled without reference to the nature of the relationships comprising the structure, the study directly tested whether team knowledge mediated the effects of instrumental and expressive network relationships on team performance. Furthermore, with its focus on expressive networks that link the workplace to a more informal world, which have been rather neglected in previous research, it enhances knowledge of teams andnetworks. The results indicate that knowledge sharing fully mediates the influence of complementarities between dense and fragmented instrumental network relationships, thus providing empirical validation of the implicit understanding that networks transfer knowledge. Fourthly, the study findings suggest that an optimal configuration of the work-team social-network structure combines both bridging and bonding social relationships.
Resumo:
We performed a study on the specific composition, structure, and dynamics of two Cystoseira mediterranea communities from the north-western Mediterranean submitted to different degrees of pollution. The structural complexity (species richness, specific distribution, and species and pattern diversity) and biomass production were lower in the polluted site. In this station, opportunistic algae (mainly Ulva rigida) loomed, and Mesophyllum lichenoides and some encrusting brown algae increased their cover. Other species (Jania rubens, and some Ceramiales) decreased their abundance when compared with the polluted site
Resumo:
Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.