959 resultados para Structural Stability
Resumo:
Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.
Resumo:
Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.
Resumo:
Background: Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The role of calcium deposition and its contribution to plaque stability is controversial. This study uses both an idealized and a patient-specific model to evaluate the effect of a calcium deposit on the stress distribution within an atheromatous plaque. Methods: Using a finite-element method, structural analysis was performed on an idealized plaque model and the location of a calcium deposit within it was varied. In addition to the idealized model, in vivo high-resolution MR imaging was performed on 3 patients with carotid atheroma and stress distributions were generated. The individual plaques were chosen as they had calcium at varying locations with respect to the lumen and the fibrous cap. Results: The predicted maximum stress was increased by 47.5% when the calcium deposit was located in the thin fibrous cap in the model when compared with that in a model without a deposit. The result of adding a calcium deposit either to the lipid core or remote from the lumen resulted in almost no increase in maximal stress. Conclusion: Calcification at the thin fibrous cap may result in high stress concentrations, ultimately increasing the risk of plaque rupture. Assessing the location of calcification may, in the future, aid in the risk stratification of patients with carotid stenosis.
Resumo:
Vibrational stability of large flexible structurally damped spacecraft carrying internal angular momentum and undergoing large rigid body rotations is analysed modeling the systems as elastic continua. Initially, analytical solutions to the motion of rigid gyrostats under torque-free conditions are developed. The solutions to the gyrostats modeled as axisymmetric and triaxial spacecraft carrying three and two constant speed momentum wheels, respectively, with spin axes aligned with body principal axes are shown to be complicated. These represent extensions of solutions for simpler cases existing in the literature. Using these solutions and modal analysis, the vibrational equations are reduced to linear ordinary differential equations. Equations with periodically varying coefficients are analysed applying Floquet theory. Study of a few typical beam- and plate-like spacecraft configurations indicate that the introduction of a single reaction wheel into an axisymmetric satellite does not alter the stability criterion. However, introduction of constant speed rotors deteriorates vibrational stability. Effects of structural damping and vehicle inertia ratio are also studied.
Resumo:
The active site of triosephosphate isomerase (TIM, EC: 5.3.1.1), a dimeric enzyme, lies very close to the subunit interface. Attempts to engineer monomeric enzymes have yielded well-folded proteins with dramatically reduced activity. The role of dimer interface residues in the stability and activity of the Plasmodium falciparum enzyme, PfTIM, has been probed by analysis of mutational effects at residue 74. The PfTIM triple mutant W11F/W168F/Y74W (Y74W*) has been shown to dissociate at low protein concentrations, and exhibits considerably reduced stability in the presence of denaturants, urea and guanidinium chloride. The Y74W* mutant exhibits concentration-dependent activity, with an approximately 22-fold enhancement of kcat over a concentration range of 2.5–40 μm, suggesting that dimerization is obligatory for enzyme activity. The Y74W* mutant shows an approximately 20-fold reduction in activity compared to the control enzyme (PfTIM WT*, W11F/W168F). Careful inspection of the available crystal structures of the enzyme, together with 412 unique protein sequences, revealed the importance of conserved residues in the vicinity of the active site that serve to position the functional K12 residue. The network of key interactions spans the interacting subunits. The Y74W* mutation can perturb orientations of the active site residues, due to steric clashes with proximal aromatic residues in PfTIM. The available crystal structures of the enzyme from Giardia lamblia, which contains a Trp residue at the structurally equivalent position, establishes the need for complementary mutations and maintenance of weak interactions in order to accommodate the bulky side chain and preserve active site integrity.
Resumo:
The concept of orbital compatibility is used to explain the relative energies of different macropolyhedral structural patterns such as closo-closo, closo-nido, and nido-nido. A large polyhedral borane condenses preferentially with a smaller polyhedron owing to orbital compatibility. Calculations carried out at the B3LYP/6-31G* level show that the macropolyhedron closo(12)-closo(6) is the most preferred structural pattern among the face-sharing closo-closo systems. The relative stabilities of four-shared-atom closo-closo, three-shared-atom closo-closo, three-shared-atom closo-nido, edge-sharing closo-nido, and edge-sharing nido-nido structures are in accordance with the difference in the number of vertices of the individual polyhedra of the macropolyhedra. When the difference in the number of vertices of the individual polyhedra is large, the stability of the macropolyhedra is also large. Calculations further show that the orbital compatibility plays an important role in deciding the stability of the macropolyhedral boranes with more than two polyhedral units. The dependence of the orbital compatibility on the relative stability of the macropolyhedron varies with other factors such as inherent stability of the individual polyhedron and steric factors.
Resumo:
Vibrational stability of a large flexible, structurally damped spacecraft subject to large rigid body rotations is analysed modelling the system as an elastic continuum. Using solution of rigid body attitude motion under torque free conditions and modal analysis, the vibrational equations are reduced to ordinary differential equations with time-varying coefficients. Stability analysis is carried out using Floquet theory and Sonin-Polya theorem. The cases of spinning and non-spinning spacecraft idealized as a flexible beam plate undergoing simple structural vibration are analysed in detail. The critical damping required for stabilization is shown to be a function of the spacecraft's inertia ratio and the level of disturbance.
Resumo:
Optically clear glasses were fabricated by quenching the melt of CaCO3-Bi2O3-B2O3 (in equimolecular ratio). The amorphous and glassy characteristics of the as-quenched samples were confirmed via the X-ray powder diffraction (XRD) and differential scanning calorimetric (DSC) studies These glasses were found to. have high thermal stability parameter (S). The optical transmission studies carried out in the 200-2500 nm wavelength range confirmed both the as-quenched and heat-treated samples to be transparent between 400 nm and 2500 nm. The glass-plates that were heat-treated just above the glass transition temperature (723 K) for 6 h retained approximate to 60% transparency despite having nano-crystallites (approximate to 50-100 nm) of CaBi2B2O7 (CBBO) as confirmed by both the XRD and transmission electron microscopy (TEM) studies. The dielectric properties and impedance characteristics of the as-quenched and heat-treated (723 K/6 h) samples were studied as a function of frequency at different temperatures. Cole-Cole equation was employed to rationalize the impedance data.
Resumo:
WO3 nanoplate arrays with (002) oriented facets grown on fluorine doped SnO2 (FTO) glass substrates are tailored by tuning the precursor solution via a facile hydrothermal method. A 2-step hydrothermal method leads to the preferential growth of WO3 film with enriched (002) facets, which exhibits extraordinary photoelectrochemical (PEC) performance with a remarkable photocurrent density of 3.7 mA cm–2 at 1.23 V vs. revisable hydrogen electrode (RHE) under AM 1.5 G illumination without the use of any cocatalyst, corresponding to ~93% of the theoretical photocurrent of WO3. Density functional theory (DFT) calculations together with experimental studies reveal that the enhanced photocatalytic activity and better photo-stability of the WO3 films are attributed to the synergistic effect of highly reactive (002) facet and nanoplate structure which facilitates the photo–induced charge carrier separation and suppresses the formation of peroxo-species. Without the use of oxygen evolution cocatalysts, the excellent PEC performance, demonstrated in this work, by simply tuning crystal facets and nanostructure of pristine WO3 films may open up new opportunities in designing high performance photoanodes for PEC water splitting.
Resumo:
Two coordination polymers [Ni(ipt)(dap)(2)](n) (1) and [Cu(ipt)(dap)H2O](n) center dot nH(2)O (2) with an overall one-dimensional arrangement and having isophthalate (ipt) as bridging moieties and chelating 1,3-diaminopropane (dap) as structure modulating units have been prepared and characterized by crystallographic, spectroscopic and thermo-analytical studies. Both have an overall one-dimensional zig-zag nature but with a distorted octahedral NiN4O2 chromophore for 1 and a distorted square pyramidal CuN2O3 chromophore for 2. Even though the ipt units are acting as bridging units through mono-dentatively coordinating carboxylate functions in both polymers, compound 1 has the carboxylate oxygen linkages at the trans positions, while in 2 the oxygen linkages occur at the cis positions leading to a different type of zig-zag arrangement. Relevant spectral and bonding parameters also could be evaluated for the compounds using UV-Vis and EPR spectra. Thermal stability and possible structural modifications on thermal treatment of the compounds were also investigated and the relevant thermodynamic and kinetic parameters evaluated from the thermal data. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
Resumo:
We all have fresh in our memory what happened to the IT sector only a few years ago when the IT-bubble burst. The upswing of productivity in this sector slowed down, investors lost large investments, many found themselves looking for a new job, and countless dreams fell apart. Product developers in the IT sector have experienced a large number of organizational restructurings since the IT boom, including rapid growth, downsizing processes, and structural reforms. Organizational restructurings seem to be a complex and continuous phenomenon people in this sector have to deal with. How do software product developers retrospectively construct their work in relation to organizational restructurings? How do organizational restructurings bring about specific social processes in product development? This working paper focuses on these questions. The overall aim is to develop an understanding of how software product developers construct their work during organizational restructurings. The theoretical frame of reference is based on a social constructionist approach and discourse analysis. This approach offers more or less radical and critical alternatives to mainstream organizational theory. Writings from this perspective attempt to investigate and understand sociocultural processes by which various realities are created. Therefore these studies aim at showing how people participate in constituting the social world (Gergen & Thatchenkery, 1996); knowledge of the world is seen to be constructed between people in daily interaction, in which language plays a central role. This means that interaction, especially the ways of talking and writing about product development during organizational restructurings, become the target of concern. This study consists of 25 in-depth interviews following a pilot study based on 57 semi-structured interviews. In this working paper I analyze 9 in-depth interviews. The interviews were conducted in eight IT firms. The analysis explores how discourses are constructed and function, as well as the consequences that follow from different discourses. The analysis shows that even though the product developers have experienced many organizational restructurings, some of which have been far-reaching, their accounts build strongly on a stability discourse. According to this discourse product development is, perhaps surprisingly, not influenced to a great extent by organizational restructurings. This does not mean that product development is static. According to the social constructionist approach, product development is constantly being reproduced and maintained in ongoing processes. In other words stable effects are also ongoing achievements and these are of particular interest in this study. The product developers maintain rather than change the product development through ongoing processes of construction, even when they experience continuous extensive organizational restructurings. The discourse of stability exists alongside other discourses, some which contradict each other. Together they direct product development and generate meanings. The product developers consequently take an active role in the construction of their work during organizational restructurings. When doing this they also negotiate credible positions for themselves
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
We report experimental studies which confirm our prediction, namely that the ordered structure of poly(hydroxypro1ine) in solution corresponds to a left-handed helical structure with intrachain hydrogen bonds. The CD studies show that the poly(hydroxypro1ine) molecule has essentially the same conformation in aqueous solution and in the film obtained subsequently by evaporation. X-ray diffraction patterns of the sample in this form (B form) have been recorded at different relative humidities. The patterns recorded at relative humidities over 66% can be interpreted in terms of a helical structure with intrachain hydrogen bonds. These results lead us to conclude that the ordered conformation of poly(hydroxypro1ine) in solution is form B and not form A. This offers a simple explanation for the greater stability of the poly(hydroxypro1ine) helix in solution as compared to the poly(pro1ine) form I1 helix and also for the absence of mutarotation for poly(hydroxypro1ine).
Resumo:
A feature common to many adaptive systems for identification and control is the adjustment.of gain parameters in a manner ensuring the stability of the overall system. This paper puts forward a principle which assures such a result for arbitrary systems which are linear and time invariant except for the adjustable parameters. The principle only demands that a transfer function be positive real. This transfer function dependent on the structure of the system with respect to the parameters. Several examples from adaptive identification, control and observer schemes are given as illustrations of the conceptual simplification provided by the structural principle.