952 resultados para Stimulating Factor-receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, two binding sites for interleukin 5 (IL-5) were identified on the IL-5 receptor alpha chain (IL-5R alpha). They are located within the CD loop of the first fibronectin type III (FnIII)-like domain and the EF loop of the second FnIII-like domain. The first binding site was identified by exploiting the different abilities of human IL-5R alpha (hIL-5R alpha) and mouse IL-5R alpha (mIL-5R alpha) to bind hIL-5. Here we show that ovine IL-5 (oIL-5) has the ability to activate the hIL-5R alpha but not the mIL-5R alpha. By using chimeras of the mIL-5R alpha and hIL-5R alpha we demonstrate that residues within the first and third FnIII-like domains of mIL-5R alpha are responsible for this lack of activity. Furthermore, mutation of residues on hIL-5R alpha to mIL-5R alpha within the predicted DE and FG loop regions of the third FnIII domain reduces oIL-5 activity, These results show that regions of the third FnIII domain of IL-5R alpha are involved in binding, in addition to the regions in domains one and two of the IL-5R alpha that were identified in an earlier study. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (3;21)(q26;q22) translocation associated with treatment-related myelodysplastic syndrome, treatment-related acute myeloid leukemia, and blast crisis of chronic myeloid leukemia results in the expression of the chimeric genes AML1/EAP, AML1/MDS1, and AML1/EVI1. AML1 (CBFA2), which codes for the alpha subunit of the heterodimeric transcription factor CBF, is also involved in the t(8;21), and the gene coding for the beta subunit (CBFB) is involved in the inv(16). These are two of the most common recurring chromosomal rearrangements in acute myeloid leukemia. CBF corresponds to the murine Pebp2 factor, and CBF binding sites are found in a number of eukaryotic and viral enhancers and promoters. We studied the effects of AML1/EAP and AML1/MDS1 at the AML1 binding site of the CSF1R (macrophage-colony-stimulating factor receptor gene) promoter by using reporter gene assays, and we analyzed the consequences of the expression of both chimeric proteins in an embryonic rat fibroblast cell line (Rat1A) in culture and after injection into athymic nude mice. Unlike AML1, which is an activator of the CSF1R promoter, the chimeric proteins did not transactivate the CSF1R promoter site but acted as inhibitors of AML1 (CBFA2). AML1/EAP and AML1/MDS1 expressed in adherent Rat1A cells decreased contact inhibition of growth, and expression of AML1/MDS1 was associated with acquisition of the ability to grow in suspension culture. Expression of AML1/MDS1 increased the tumorigenicity of Rat1A cells injected into athymic nude mice, whereas AML1/EAP expression prevented tumor growth. These results suggest that expression of AML1/EAP and AML1/MDS1 can interfere with normal AML1 function, and that AML1/MDS1 has tumor-promoting properties in an embryonic rat fibroblast cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We utilized a mouse model of acute promyelocytic leukemia (APL) to investigate how aberrant activation of cytokine signaling pathways interacts with chimeric transcription factors to generate acute myeloid leukemia. Expression in mice of the APL-associated fusion, PML-RARA, initially has only modest effects on myelopoiesis. Whereas treatment of control animals with interleukin-3 (IL-3) resulted in expanded myelopoiesis without a block in differentiation, PML-RARA abrogated differentiation that normally characterizes the response to IL-3. Retroviral transduction of bone marrow with an IL-3-expressing retrovirus revealed that IL-3 and promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) combined to generate a lethal leukemia-like syndrome in

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (−) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER− and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER− and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating factor for ER− cells. An outline of the pathway for the EGF-induced enhanced proliferation of ER− human breast cancer cells is proposed. The transmission of mitogenic signal induced by EGF–EGFR interaction is mediated via activation of nuclear factor κB (NF-κB). The basal level of active NF-κB in ER− cells is elevated by EGF and inhibited by anti-EGFR antibody (EGFR-Ab), thus qualifying EGF as a NF-κB activation factor. NF-κB transactivates the cell-cycle regulatory protein, cyclin D1, which causes increased phosphorylation of retinoblastoma protein, more strongly in ER− cells. An inhibitor of phosphatidylinositol 3 kinase, Ly294–002, blocked this event, suggesting a role of the former in the activation of NF-κB by EGF. Go6976, a well-characterized NF-κB inhibitor, blocked EGF-induced NF-κB activation and up-regulation of cell-cycle regulatory proteins. This low molecular weight compound also caused apoptotic death, predominantly more in ER− cells. Thus Go6976 and similar NF-κB inhibitors are potentially novel low molecular weight therapeutic agents for treatment of ER− breast cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During mouse embryogenesis, macrophage-like cells arise first in the yolk sac and are produced subsequently in the liver. The onset of liver hematopoiesis is associated with the transition from primitive to definitive erythrocyte production. This report addresses the hypothesis that a similar transition in phenotype occurs in myelopoiesis. We have used whole mount in situ hybridization to detect macrophage-specific genes expressed during mouse development. The mouse c-fms mRNA, encoding the receptor for macrophage colony-stimulating factor (CSF-1), was expressed on phagocytic cells in the yolk sac and throughout the embryo before the onset of liver hematopoiesis, Similar cells were detected using the mannose receptor, the complement receptor (CR3), or the Microphthalmia transcription factor (MITF) as mRNA markers. By contrast, other markers including the F4/80 antigen, the macrophage scavenger receptor, the S-100 proteins, S100A8 and S100A9, and the secretory product lysozyme appeared later in development and appeared restricted to only a subset of c-fms-positive cells. Two-color immunolabeling on disaggregated cells confirmed that CR3 and c-fms proteins are expressed on the same cells. Among the genes appearing later in development was the macrophage-restricted transcription factor, PU.1, which has been shown to be required for normal adult myelopoiesis. Mice with null mutations in PU.1 had normal numbers of c-fms-positive phagocytes at 11.5dpc. PU.1(-/-) embryonic stem cells were able to give rise to macrophagelike cells after cultivation in vitro. The results support previous evidence that yolk sac-derived fetal phagocytes are functionally distinct from those arising in the liver and develop via a different pathway. (C) 1999 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several activating mutations have recently been described in the common beta subunit for the human interleukin(IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (h beta c), Two of these, FI Delta and 1374N, result, respectively, in a 37-amino acid duplication and an isoleucine-to-asparagine substitution in the extracellular domain. A third, V449E, leads to valine-to-glutamic acid substitution in the transmembrane domain. Previous studies have shown that when expressed in murine hemopoietic cells in vitro, the extracellular mutants can confer factor independence on only the granulocyte-macrophage lineage while the transmembrane mutant can do so to all cell types of the myeloid and erythroid compartments. To further study the signaling properties of the constitutively active hpc mutants, we have used novel murine hemopoietic cell lines, which we describe in this report. These lines, FDB1 and FDB2, proliferate in murine IL-3 and undergo granulocyte-macrophage differentiation in response to murine GM-CSF, We find that while the transmembrane mutant, V449E, confers factor-independent proliferation on these cell lines, the extracellular hpc mutants promote differentiation. Hence, in addition to their ability to confer factor independence on distinct cell types, transmembrane and extracellular activated h beta c mutants deliver distinct signals to the same cell type. Thus, the FDB cell lines, in combination with activated h beta c mutants, constitute a powerful new system to distinguish between signals that determine hemopoietic proliferation or differentiation. (C) 2000 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (h beta c) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3R alpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type h beta c exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type h beta c, despite failing to undergo IL-3-stimulated h beta e tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and h beta c tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several reports have suggested an interaction between the erythropoietin receptor (EpoR) and the shared signaling subunit (hbeta(c)) of the human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors, although the functional consequences of this interaction are unclear. We previously showed that in vivo expression of constitutively active extracellular (EC) mutants of hbeta(c) induces erythrocytosis and Epo independence of erythroid colony-forming units (CFU-E). This occurs despite an apparent requirement of these mutants for the GM-CSF receptor alpha-subunit (GMRalpha), which is not expressed in CFU-E. Here, we show that coexpression of hbeta(c) EC mutants and EpoR in BaF-B03 cells, which lack GMRalpha, results in factor-independent proliferation and JAK2 activation. Mutant receptors that cannot activate JAK2 fail to produce a functional interaction. As there is no detectable phosphorylation of hbeta(c). on intracellular tyrosine residues, EpoR displays constitutive tyrosine phosphorylation. These observations suggest that JAK2 activation mediates cross-talk between EC mutants of hbeta(c) and EpoR. The implications of these data are discussed as are our findings that activated hbeta(c) mutants can functionally interact with certain other cytokine receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The membrane-proximal cytoplasmic region of cytokine receptors (CRs) is highly conserved and essential for receptor activation. In particular this region is essential for the activation of members of the Janus family of protein kinases (JAK) which results in initiation of receptor signaling. We have examined the sequence of this region in a number of CR signaling and accessory subunits with a view to better delineating motifs that play an important role in initiating receptor activity. Here, we have delineated two distinct proline-rich motifs in the membrane-proximal domains of cytokine receptors. Their configuration and distribution among CR subunits strongly suggest a model in which the two motifs act in a concerted manner to induce full receptor and JAK activation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells of the mononuclear phagocyte lineage possess receptors for macrophage colony-stimulating factor (CSF-1) encoded by the c-fms protooncogene and respond to CSF-1 with increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentiation marker. In whole mount analyses of mRNA expression in embryos, c-fms is expressed at very high levels on placental trophoblasts. It is detectable on individual cells in the yolk sac around 8.5 to 9 days postcoitus, appears on isolated cells in the head of the embryo around 9.5 dpc, and appears on numerous cells throughout the embryo by day 10.5. The extent of c-fms expression is much greater than for other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. Our studies of the cis-acting elements of the c-fms promoter have indicated a key role for collaboration between the macrophage-specific transcription factor, Pu.1, which functions in determining the site of transcription initiation, and other members of the Ets transcription factor family. This is emerging as a common pattern in macrophage-specific promoters. We have shown that two PU box elements alone can function as a macrophage-specific promoter. The activity of both the artifical promoter and the c-fms promoter is activated synergistically by coexpression of Pu.1 and another Ets factor, c-Ets-2. A 3.5kb c-fms exon 2 promoter (but not the 300bp proximal promoter) is also active in a wide diversity of tumor cell lines. The interesting exception is the melanoma cell line K1735, in which the promoter is completely shut down and expression of c-fms causes growth arrest and cell death. The activity of the exon 2 promoter in these nonmacrophages is at least as serum responsive as the classic serum-responsive promoter of the c-fos gene. It is further inducible in nonmacrophages by coexpression of the c-fms product. Unlike other CSF-1/c-fms-responsive promoters, the c-fms promoter is not responsive to activated Ras even when c-Ets-2 is coexpressed. In most lines, production of full length c-fms is prevented by a downstream intronic terminator, but in Lewis lung carcinoma, read-through does occur, and expression of both c-fms and other macrophage-specific genes such as lysozyme and urokinase becomes detectable in conditions of serum deprivation. (C) 1997 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.