971 resultados para Steamboats -- Great Lakes (North America) -- History.
Effects of self-compatibility on the distribution range of invasive European plants in North America
Resumo:
Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.
Resumo:
Corporate Social Responsibility (CSR) addresses the responsibility of companies for their impacts on society. The concept of strategic CSR is becoming increasingly mainstreamed in the forest industry, but there is, however, little consensus on the definition and implementation of CSR. The objective of this research is to build knowledge on the characteristics of CSR and to provide insights on the emerging trend to increase the credibility and legitimacy of CSR through standardization. The study explores how the sustainability managers of European and North American forest companies perceive CSR and the recently released ISO 26000 guidance standard on social responsibility. The conclusions were drawn from an analysis of two data sets; multivariate survey data based on one subset of 30 European and 13 North American responses, and data obtained through in-depth interviewing of 10 sustainability managers that volunteered for an hour long phone discussion about social responsibility practices at their company. The analysis concluded that there are no major differences in the characteristics of cross-Atlantic CSR. Hence, the results were consistent with previous research that suggests that CSR is a case- and company-specific concept. Regarding the components of CSR, environmental issues and organizational governance were key priorities in both regions. Consumer issues, human rights, and financial issues were among the least addressed categories. The study reveals that there are varying perceptions on the ISO 26000 guidance standard, both positive and negative. Moreover, sustainability managers of European and North American forest companies are still uncertain regarding the applicability of the ISO 26000 guidance standard to the forest industry. This study is among the first to provide a preliminary review of the practical implications of the ISO 26000 standard in the forest sector. The results may be utilized by sustainability managers interested in the best practices on CSR, and also by a variety of forest industrial stakeholders interested in the practical outcomes of the long-lasting CSR debate.
Resumo:
The Great Lakes watershed is home to over 40 million people, and the health of the Great Lakes ecosystem is vital to the overall economic, societal, and environmental health of the U.S. and Canada. However, environmental issues related to them are sometimes overlooked. Policymakers and the public face the challenges of balancing economic benefits with the need to conserve and/or replenish regional natural resources to ensure long term prosperity. From the literature review, nine critical stressors of ecological services were delineated, which include pollution and contamination, agricultural erosion, non-native species, degraded recreational resources, loss of wetlands habitat, climate change, risk of clean water shortage, vanishing sand dunes, and population overcrowding; this list was validated through a series of stakeholder discussions and focus groups in Grand Rapids. Focus groups were conducted in Grand Rapids to examine the awareness of, concern with, and willingness to expend resources on these stressors. Stressors that the respondents have direct contact with tend to be the most important. The focus group results show that concern related to pollution and contamination is much higher than for any of the other stressors. Low responses to climate change result in recommendations for outreach programs.
Resumo:
Information on phosphorus bioavailability can provide water quality managers with the support required to target point source and watershed loads contributing most significantly to water quality conditions. This study presents results from a limited sampling program focusing on the five largest sources of total phosphorus to the U.S. waters of the Great Lakes. The work provides validation of the utility of a bioavailability-based approach, confirming that the method is robust and repeatable. Chemical surrogates for bioavailability were shown to hold promise, however further research is needed to address site-to-site and seasonal variability before a universal relationship can be accepted. Recent changes in the relative contribution of P constituents to the total phosphorus analyte and differences in their bioavailability suggest that loading estimates of bioavailable P will need to address all three components (SRP, DOP and PP). A bioavailability approach, taking advantage of chemical surrogate methodologies is recommended as a means of guiding P management in the Great Lakes.
Resumo:
Simulations of forest stand dynamics in a modelling framework including Forest Vegetation Simulator (FVS) are diameter driven, thus the diameter or basal area increment model needs a special attention. This dissertation critically evaluates diameter or basal area increment models and modelling approaches in the context of the Great Lakes region of the United States and Canada. A set of related studies are presented that critically evaluate the sub-model for change in individual tree basal diameter used in the Forest Vegetation Simulator (FVS), a dominant forestry model in the Great Lakes region. Various historical implementations of the STEMS (Stand and Tree Evaluation and Modeling System) family of diameter increment models, including the current public release of the Lake States variant of FVS (LS-FVS), were tested for the 30 most common tree species using data from the Michigan Forest Inventory and Analysis (FIA) program. The results showed that current public release of the LS-FVS diameter increment model over-predicts 10-year diameter increment by 17% on average. Also the study affirms that a simple adjustment factor as a function of a single predictor, dbh (diameter at breast height) used in the past versions, provides an inadequate correction of model prediction bias. In order to re-engineer the basal diameter increment model, the historical, conceptual and philosophical differences among the individual tree increment model families and their modelling approaches were analyzed and discussed. Two underlying conceptual approaches toward diameter or basal area increment modelling have been often used: the potential-modifier (POTMOD) and composite (COMP) approaches, which are exemplified by the STEMS/TWIGS and Prognosis models, respectively. It is argued that both approaches essentially use a similar base function and neither is conceptually different from a biological perspective, even though they look different in their model forms. No matter what modelling approach is used, the base function is the foundation of an increment model. Two base functions – gamma and Box-Lucas – were identified as candidate base functions for forestry applications. The results of a comparative analysis of empirical fits showed that quality of fit is essentially similar, and both are sufficiently detailed and flexible for forestry applications. The choice of either base function in order to model diameter or basal area increment is dependent upon personal preference; however, the gamma base function may be preferred over the Box-Lucas, as it fits the periodic increment data in both a linear and nonlinear composite model form. Finally, the utility of site index as a predictor variable has been criticized, as it has been widely used in models for complex, mixed species forest stands though not well suited for this purpose. An alternative to site index in an increment model was explored, using site index and a combination of climate variables and Forest Ecosystem Classification (FEC) ecosites and data from the Province of Ontario, Canada. The results showed that a combination of climate and FEC ecosites variables can replace site index in the diameter increment model.
Resumo:
We used active remote sensing technology to characterize forest structure in a northern temperate forest on a landscape- and local-level in the Upper Peninsula of Michigan. Specifically, we used a form of active remote sensing called light detection and ranging (e.g., LiDAR) to aid in the depiction of current forest structural stages and total canopy gap area estimation. On a landscape-level, LiDAR data are shown not only to be a useful tool in characterizing forest structure, in both coniferous and deciduous forest cover types, but also as an effective basis for data-driven surrogates for classification of forest structure. On a local-level, LiDAR data are shown to be a benchmark reference point to evaluate field-based canopy gap area estimations, due to the highly accurate nature of such remotely sensed data. The application of LiDAR remote sensed data can help facilitate current and future sustainable forest management.
Resumo:
Anthropogenic activities have increased phosphorus (P) loading in tributaries to the Laurentian Great Lakes resulting in eutrophication in small bays to most notably, Lake Erie. Changes to surface water quality from P loading have resulted in billions of dollars in damage and threaten the health of the world’s largest freshwater resource. To understand the factors affecting P delivery with projected increasing urban lands and biofuels expansion, two spatially explicit models were coupled. The coupled models predict that the majority of the basin will experience a significant increase in urban area P sources while the agriculture intensity and forest sources of P will decrease. Changes in P loading across the basin will be highly variable spatially. Additionally, the impacts of climate change on high precipitation events across the Great Lakes were examined. Using historical regression relationships on phosphorus concentrations, key Great Lakes tributaries were found to have future changes including decreasing total loads and increases to high-flow loading events. The urbanized Cuyahoga watersheds exhibits the most vulnerability to these climate-induced changes with increases in total loading and storm loading , while the forested Au Sable watershed exhibits greater resilience. Finally, the monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes was examined with a focus on the challenges to monitoring. Based on these interviews, the research identified three issues that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider: first, that the policy objectives driving different monitoring programs vary, which results in different patterns of sampling design and frequency; second, that these differences complicate efforts to encourage collaboration; and third, that methods of funding sampling programs vary from agency to agency, further complicating efforts to generate sufficient long-term data to improve our understanding of phosphorus into the Great Lakes. The dissertation combines these three areas of research to present the potential future impacts of P loading in the Great Lakes as anthropogenic activities, climate and monitoring changes. These manuscripts report new experimental data for future sources, loading and climate impacts on phosphorus.
Resumo:
Peatlands cover only ~3% of the global land area, but store ~30% of the worlds' soil carbon. There are many different peat types that store different amounts of carbon. Most inventories of carbon storage in northern peatlands have been conducted in the expansive Sphagnum dominated peatlands. Although, northern white cedar peatlands (NW cedar, Thuja occidentalis L.) are also one of the most common peatland types in the Great Lakes Region, occupying more than 2 million hectares. NW cedar swamps are understudied, due in part to the difficulties in collection methods. General lack of rapid and consistent sampling methods has also contributed in a lack of carbon stock quantification for many peatlands. The main objective of this thesis is to quantify: 1) to evaluate peat sampling methods 2) the amount of C-stored and the rates of long-term carbon accumulation in NW cedar peatlands. We sampled 38 peatlands separated into four categories (black ash, NW cedar swamp, sedge, and Sphagnum) during the summers of 2011/2012 across northern MN and the Upper Peninsula of MI. Basal dates of peat indicate that cedar peatlands were between 1970-7790 years old. Cedar peatlands are generally shallower than Sphagnum peat, but due to their higher bulk density, hold similar amounts of carbon with our sites averaging ~800 MgC ha-1. We estimate that NW cedar peatlands store over 1.7 Gt of carbon in the Great Lakes Region. Each of the six methods evaluated had a different level of accuracy and requires varying levels of effort and resources. The depth only method and intermittent sampling method were the most accurate methods of peatland sampling.
Resumo:
Medical institutions have established medical education fellowships to equip faculty to meet the challenge of constant educational change and to empower faculty to assume programmatic leadership roles in medical education. The purpose of this study was to determine the prevalence and focus of these programs. [See PDF for complete abstract]
Resumo:
Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.
Resumo:
Ar-40/Ar-39 total gas and plateau dates from muscovite and biotite in the southern Black Hills, South Dakota, provide evidence for a period of Middle Proterozoic slow cooling. Early Proterozoic (1600-1650 Ma) mica dates were obtained from metasedimentary rocks located in a synformal structure between the Harney Peak and Bear Mountain domes and also south of Bear Mountain. Metamorphic rocks from the dome areas and undeformed samples of the similar to 1710 Ma Harney Peak Granite (HPG) yield Middle Proterozoic mica dates (similar to 1270-1500 Ma). Two samples collected between the synform and Bear Mountain dome yield intermediate total gas mica dates of similar to 1550 Ma. We suggest two end-member interpretations to explain the map pattern of cooling ages: (1) subhorizontal slow cooling of an area which exhibits variation in mica Ar retention intervals or (2) mild folding of a Middle Proterozoic (similar to 1500 Ma) similar to 300 degrees C isotherm. According to the second interpretation, the preservation of older dates between the domes may reflect reactivation of a preexisting synformal structure (and downwarping of relatively cold rocks) during a period of approximately east-west contraction and slow uplift during the Middle Proterozoic. The mica data, together with hornblende data from the Black Hills published elsewhere, indicate that the ambient country-rock temperature at the 3-4 kbar depth of emplacement of the HPG was between 350 degrees C and 500 degrees C, suggesting that the average upper crustal geothermal gradient was 25 degrees-40 degrees C/km prior to intrusion. The thermochronologic data suggest HPG emplacement was followed by a similar to 200 m.y. period of stability and tectonic quiescence with little uplift. We propose that crust thickened during the Early Proterozoic was uplifted and erosionally(?) thinned prior to similar to 1710 Ma and that the HPG magma was emplaced into isostatically stable crust of relatively normal thickness. We speculate that uplift and crustal thinning prior to HPG intrusion was the result of differential thinning of the subcrustal lithosphere beneath the Black Hills. If so, this process would have also caused an increase in mantle heat flux across the Moho and triggered vapor-absent melting of biotite to produce the HPG magma. This scenario for posttectonic granite generation is supported, in part, by the fact that in the whole of the Black Hills, the HPG is spatially associated with the deepest exposed Early Proterozoic country rock.
Resumo:
The ability of the one-dimensional lake model FLake to represent the mixolimnion temperatures for tropical conditions was tested for three locations in East Africa: Lake Kivu and Lake Tanganyika's northern and southern basins. Meteorological observations from surrounding automatic weather stations were corrected and used to drive FLake, whereas a comprehensive set of water temperature profiles served to evaluate the model at each site. Careful forcing data correction and model configuration made it possible to reproduce the observed mixed layer seasonality at Lake Kivu and Lake Tanganyika (northern and southern basins), with correct representation of both the mixed layer depth and water temperatures. At Lake Kivu, mixolimnion temperatures predicted by FLake were found to be sensitive both to minimal variations in the external parameters and to small changes in the meteorological driving data, in particular wind velocity. In each case, small modifications may lead to a regime switch, from the correctly represented seasonal mixed layer deepening to either completely mixed or permanently stratified conditions from similar to 10 m downwards. In contrast, model temperatures were found to be robust close to the surface, with acceptable predictions of near-surface water temperatures even when the seasonal mixing regime is not reproduced. FLake can thus be a suitable tool to parameterise tropical lake water surface temperatures within atmospheric prediction models. Finally, FLake was used to attribute the seasonal mixing cycle at Lake Kivu to variations in the near-surface meteorological conditions. It was found that the annual mixing down to 60m during the main dry season is primarily due to enhanced lake evaporation and secondarily to the decreased incoming long wave radiation, both causing a significant heat loss from the lake surface and associated mixolimnion cooling.