873 resultados para Stand-Alone and Grid Connected PV applications
Resumo:
Stand alone solar powered refrigeration and water desalination, two of the most popular and sought after applications of solar energy systems, have been selected as the topic of research for the works presented in this thesis. The water desalination system based on evaporation and condensation was found to be the most suitable one to be powered by solar energy. It has been established that highoutput fast-response solar heat collectors used to achieve high rates of evaporation and reliable solar powered cooling system for faster rates of condensation are the most important factors in achieving increased outputs in solar powered desalination systems. Comprehensive reviews of Solar powered cooling/refrigeration and also water desalination techniques have been presented. In view of the fact that the Institute of Technology, Sligo has a well-established long history of research and development in the production of state of the art high-efficiency fast-response evacuated solar heat collectors it was decided to use this know how in the work described in this thesis. For this reason achieving high rates of evaporation was not a problem. It was, therefore, the question of the solar powered refrigeration that was envisaged to be used in the solar powered desalination tofacilitate rapid condensation of the evaporated water that had to be addressed first. The principles of various solar powered refrigeration techniques have also been reviewed. The first step in work on solar powered refrigeration was to successfully modify a conventional refrigerator working on Platen-Munters design to be powered by highoutput fast-response evacuated solar heat collectors. In this work, which was the first ever successful attempt in the field, temperatures as low as —19°C were achieved in the icebox. A new approach in the use of photovoltaic technology to power a conventional domestic refrigerator was also attempted. This was done by modifying a conventional domestic refrigerator to be powered by photovoltaic panels in the most efficient way. In the system developed and successfully tested in this approach, the power demand has been reduced phenomenally and it is possible to achieve 48 hours of cooling power with exposure to just 7 hours of sunshine. The successful development of the first ever multi-cycle intermittent solar powered icemaker is without doubt the most exciting breakthrough in the work described in this thesis. Output of 74.3kg of ice per module with total exposure area of 2.88 m2, or 25.73kg per m2, per day is a major improvement in comparison to about 5-6kg of ice per m2 per day reported for all the single cycle intermittent systems. This system has then become the basis for the development of a new solar powered refrigeration system with even higher output, named the “composite” system described in this thesis. Another major breakthrough associated with the works described in this thesis is the successful development and testing of the high-output water desalination system. This system that uses a combination of the high-output fast-response evacuated solar heat collectors and the multi-cycle icemaker. The system is capable of producing a maximum of 141 litres of distilled water per day per module which has an exposure area of 3.24m2, or a production rate of 43.5 litres per m2 per day. Once again when this result is compared to the reported daily output of 5 litres of desalinated water per m per day the significance of this piece of work becomes apparent. In the presentation of many of the components and systems described in this thesis CAD parametric solid modelling has been used instead of photographs to illustrate them more clearly. The multi-cycle icemaker and the high-output desalination systems are the subject of two patent applications.
Resumo:
Bioactive glasses (BGs) form a group of synthetic, surface-active, composition-dependent, silica-based biomaterials with osteoconductive, osteopromotive, and even angiogenic, as well as antibacterial, properties. A national interdisciplinary research group, within the Combio Technology Program (2003–2007), developed a porous load-bearing composite for surgical applications made of BG 1–98 and polymer fibers. The pre-clinical part of this thesis focused on the in vitro and in vivo testing of the composite materials in a rabbit femur and spinal posterolateral fusion model. The femur model failed to demonstrate the previously seen positive effect of BG 1–98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. The spine study was terminated early due to adverse events. In vitro cultures showed the growth inhibition of human mesenchymal stems next to BG 1–98 fibers and radical pH changes. A prospective, long-term, follow-up study was conducted on BG–S53P4 and autogenous bone used as bone graft substitutes for instrumented posterolateral spondylodesis in the treatment of degenerative spondylolisthesis (n=17) and unstable burst fractures (n=10) during 1996–1998. The operative outcome was evaluated from X-rays and CT scans, and a clinical examination was also performed. On the BG side, a solid fusion was observed in the CT scans of 12 patients, and a partial fusion was found in 5 patients, the result being a total fusion rate in all fusion sites (n=41) 88% for levels L4/5 and L5/S1 in the spondylolisthesis group. In the spine fracture group, solid fusion was observed in five patients, and partial fusion was found in five resulting in a total fusion rate of 71% of all fusion sites (n=21). The pre-clinical results suggest that under certain conditions the physical form of BG can be more critical than its chemical composition when a clinical application is designed. The first long-term clinical results concerning the use of BG S53P4 as bone graft material in instrumented posterolateral spondylodesis seems to be a safe procedure, associated with a very low complication rate. BG S53P4 used as a stand-alone bone substitute cannot be regarded as being as efficient as AB in promoting solid fusion.
Resumo:
Electrochromism, the phenomenon of reversible color change induced by a small electric charge, forms the basis for operation of several devices including mirrors, displays and smart windows. Although, the history of electrochromism dates back to the 19th century, only the last quarter of the 20th century has its considerable scientific and technological impact. The commercial applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success and exposed the potential of EC materials for future glass industry. It is evident from their patents that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these marketed devices, signifying the motivation of this thesis focusing on EC viologens. Among the family of electrochromes, viologens have been utilized in electrochromic devices (ECDs) for a while, due to its intensely colored radical cation formation induced by applying a small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected cyano groups yields viologen and polyviologen under successive electropolymerization using for example the cyclic voltammetry (CV) technique. For further development, a polyviologen-graphene composite system was fabricated, focusing at the stability of the PV electrochrome without sacrificing its excellent EC properties. High electrical conductivity, high surface area offered by graphene sheets together with its non-covalent interactions and synergism with PV significantly improved the electrochrome durability in the composite matrix. The work thereby continued in developing a CNP functionalized thiophene derivative and its copolymer for possible utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene derivative was synthesized and electropolymerized in order to explore enhancement in the EC contrast and overall EC performance. The findings suggest that such electroactive viologen/polyviologen systems and their nanostructured composite films as well as viologen functionalized conjugated polymers, can be potentially applied as an active EC material in future ECDs aiming at durable device performances.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
The arbitrarily structured C-grid, TRiSK (Thuburn, Ringler, Skamarock and Klemp, 2009, 2010) is being used in the ``Model for Prediction Across Scales'' (MPAS) and is being considered by the UK Met Office for their next dynamical core. However the hexagonal C-grid supports a branch of spurious Rossby modes which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilised transport (CLUST), a blend between centred and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed which gives further discrimination between schemes than using potential enstrophy alone and indeed some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude-longitude grids of the sphere for various shallow water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result TRiSK appears to perform better than a spectral shallow water model.
Resumo:
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.
Resumo:
The aim of this study was to investigate electricity supply solutions for an educationalcenter that is being built in Chonyonyo Tanzania. Off-grid power generation solutions andfurther optimization possibilities were studied for the case.The study was done for Engineers Without Borders in Sweden. Who are working withMavuno Project on the educational center. The school is set to start operating in year 2015with 40 girl students in the beginning. The educational center will help to improve genderequality by offering high quality education in a safe environment for girls in rural area.It is important for the system to be economically and environmentally sustainable. Thearea has great potential for photovoltaic power generation. Thus PV was considered as theprimary power generation and a diesel generator as a reliable backup. The system sizeoptimization was done with HOMER. For the simulations HOMER required componentdata, weather data and load data. Common components were chose with standardproperties, the loads were based on load estimations from year 2011 and the weather datawas acquired from NASA database. The system size optimization result for this base casewas a system with 26 kW PW; 5.5 kW diesel generator, 15 kW converter and 112 T-105batteries. The initial cost of the system was 55 875 €, the total net present cost 92 121 €and the levelized cost of electricity 0.264 €/kWh.In addition three optimization possibilities were studied. First it was studied how thesystem should be designed and how it would affect the system size to have night loads(security lights) use DC and could the system then be extended in blocks. As a result it wasfound out that the system size could be decreased as the inverter losses would be avoided.Also the system extension in blocks was found to be possible. The second study was aboutinverter stacking where multiple inverters can work as one unit. This type of connectionallows only the required number of inverters to run while shutting down the excess ones.This would allow the converter-unit to run with higher efficiency and lower powerconsumption could be achieved. In future with higher loads the system could be easilyextendable by connecting more inverters either in parallel or series depending on what isneeded. Multiple inverters would also offer higher reliability than using one centralizedinverter. The third study examined how the choice of location for a centralized powergeneration affects the cable sizing for the system. As a result it was found that centralizedpower generation should be located close to high loads in order to avoid long runs of thickcables. Future loads should also be considered when choosing the location. For theeducational center the potential locations for centralized power generation were found outto be close to the school buildings and close to the dormitories.
Resumo:
In this thesis the solar part of a large grid-connected photovoltaic system design has been done. The main purpose was to size and optimize the system and to present figures helping to evaluate the prospective project rationality, which can potentially be constructed on a contaminated area in Falun. The methodology consisted in PV market study and component selection, site analysis and defining suitable area for solar installation; and system configuration optimization based on PVsyst simulations and Levelized Cost of Energy calculations. The procedure was mainly divided on two parts, preliminary and detailed sizing. In the first part the objective was complex, which included the investigation of the most profitable component combination and system optimization due to tilt and row distance. It was done by simulating systems with different components and orientations, which were sized for the same 100kW inverter in order to make a fair comparison. For each simulated result a simplified LCOE calculation procedure was applied. The main results of this part show that with the price of 0.43 €/Wp thin-film modules were the most cost effective solution for the case with a great advantage over crystalline type in terms of financial attractiveness. From the results of the preliminary study it was possible to select the optimal system configuration, which was used in the detailed sizing as a starting point. In this part the PVsyst simulations were run, which included full scale system design considering near shadings created by factory buildings. Additionally, more complex procedure of LCOE calculation has been used here considered insurances, maintenance, time value of money and possible cost reduction due to the system size. Two system options were proposed in final results; both cover the same area of 66000 m2. The first one represents an ordinary South faced design with 1.1 MW nominal power, which was optimized for the highest performance. According to PVsyst simulations, this system should produce 1108 MWh/year with the initial investment of 835,000 € and 0.056 €/kWh LCOE. The second option has an alternative East-West orientation, which allows to cover 80% of occupied ground and consequently have 6.6 MW PV nominal power. The system produces 5388 MWh/year costs about 4500,000 € and delivers electricity with the same price of 0.056 €/kWh. Even though the EW solution has 20% lower specific energy production, it benefits mainly from lower relative costs for inverters, mounting and annual maintenance expenses. After analyzing the performance results, among the two alternatives none of the systems showed a clear superiority so there was no optimal system proposed. Both, South and East-West solutions have own advantages and disadvantages in terms of energy production profile, configuration, installation and maintenance. Furthermore, the uncertainty due to cost figures assumptions restricted the results veracity.
Resumo:
This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.
Resumo:
In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.
Resumo:
This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.
Resumo:
This paper presents the analysis of some usual MPPT (Maximum Power Point Tracking) strategies intended for small wind energy conversion (up to 1kW) based on permanent magnet synchronous generators (PMSG), considering the stand-alone application for a novel buck-boost integrated inverter. Each MPPT method is analytically introduced and then it is simulated using MatLab/Simulink considering standard conditions of wind and also commercially available turbines and generators. The extracted power in each case is compared with the maximum available power, so the tracking factor is calculated for each method. Thus, the focus is on the application to improve the efficiency of stand-alone wind energy conversion systems (WECS) with battery chargers and AC load supplied by inverter. Therefore, for this purpose a novel single phase buck-boost integrated inverter is introduced. Finally, the main experimental results for the introduced inverter are presented. © 2011 IEEE.
Resumo:
This paper presents evaluations among the most usual maximum power point tracking (MPPT) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel [tracking factor (TF)] in relation to the available power, PV voltage ripple, dynamic response, and use of sensors. Using MatLab/Simulink and dSPACE platforms, a digitally controlled boost dc-dc converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented for conventional MPPT algorithms and improved MPPT algorithms named IC based on proportional-integral (PI) and perturb and observe based on PI. Moreover, the dynamic response and the TF are also evaluated using a user-friendly interface, which is capable of online program power profiles and computes the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2012 IEEE.
Resumo:
The high electronegativity and small size of the fluorine atom and the high stability of C-F bonds impart interesting properties and applications to fluorine containing polymers. The unique properties of fluoropolymers include high thermal stability, improved chemical resistance, low surface energies, low coefficients of friction, and low dielectric constants. Applications of fluorinated polymers include use as noncorrosive materials, polymer processing aids, chemically resistant and antifouling coatings, as well as interlayer dielectrics. Fluorine-containing polymers can be directly synthesized via polymerization of fluorine-containing monomers or by post-polymerization modification. The latter method can be used to attach fluorinated species, such as perfluoroalkyl groups, onto conventional polymer chains, thereby imparting properties of fluorine-containing polymers into conventional polymers and widening their range of potential applications.
Resumo:
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.