977 resultados para Splicing regulators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carnitine octanoyltransferase (COT) transports medium-chain fatty acids through the peroxisome. During isolation of a COT clone from a rat liver library, a cDNA in which exon 2 was repeated, was characterized. Reverse transcription-PCR amplifications of total RNAs from rat liver showed a three-band pattern. Sequencing of the fragments revealed that, in addition to the canonical exon organization, previously reported [Choi, S. J. et al. (1995) Biochim. Biophys. Acta 1264, 215–222], there were two other forms in which exon 2 or exons 2 and 3 were repeated. The possibility of this exonic repetition in the COT gene was ruled out by genomic Southern blot. To study the gene expression, we analyzed RNA transcripts by Northern blot after RNase H digestion of total RNA. Three different transcripts were observed. Splicing experiments also were carried out in vitro with different constructs that contain exon 2 plus the 5′ or the 3′ adjacent intron sequences. Our results indicate that accurate joining of two exons 2 occurs by a trans-splicing mechanism, confirming the potential of these structures for this process in nature. The trans-splicing can be explained by the presence of three exon-enhancer sequences in exon 2. Analysis by Western blot of the COT proteins by using specific antibodies showed that two proteins corresponding to the expected Mr are present in rat peroxisomes. This is the first time that a natural trans-splicing reaction has been demonstrated in mammalian cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of most eukaryotes are composed of genes arranged on the chromosomes without regard to function, with each gene transcribed from a promoter at its 5′ end. However, the genome of the free-living nematode Caenorhabditis elegans contains numerous polycistronic clusters similar to bacterial operons in which the genes are transcribed sequentially from a single promoter at the 5′ end of the cluster. The resulting polycistronic pre-mRNAs are processed into monocistronic mRNAs by conventional 3′ end formation, cleavage, and polyadenylation, accompanied by trans-splicing with a specialized spliced leader (SL), SL2. To determine whether this mode of gene organization and expression, apparently unique among the animals, occurs in other species, we have investigated genes in a distantly related free-living rhabditid nematode in the genus Dolichorhabditis (strain CEW1). We have identified both SL1 and SL2 RNAs in this species. In addition, we have sequenced a Dolichorhabditis genomic region containing a gene cluster with all of the characteristics of the C. elegans operons. We show that the downstream gene is trans-spliced to SL2. We also present evidence that suggests that these two genes are also clustered in the C. elegans and Caenorhabditis briggsae genomes. Thus, it appears that the arrangement of genes in operons pre-dates the divergence of the genus Caenorhabditis from the other genera in the family Rhabditidae, and may be more widespread than is currently appreciated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been assumed that constitutive and regulated splicing of RNA polymerase II transcripts depends exclusively on signals present in the RNA molecule. Here we show that changes in promoter structure strongly affect splice site selection. We investigated the splicing of the ED I exon, which encodes a facultative type III repeat of fibronectin, whose inclusion is regulated during development and in proliferative processes. We used an alternative splicing assay combined with promoter swapping to demonstrate that the extent of ED I splicing is dependent on the promoter structure from which the transcript originated and that this regulation is independent of the promoter strength. Thus, these results provide the first evidence for coupling between alternative splicing and promoter-specific transcription, which agrees with recent cytological and biochemical evidence of coordination between splicing and transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inteins are protein-splicing elements, most of which contain conserved sequence blocks that define a family of homing endonucleases. Like group I introns that encode such endonucleases, inteins are mobile genetic elements. Recent crystallography and computer modeling studies suggest that inteins consist of two structural domains that correspond to the endonuclease and the protein-splicing elements. To determine whether the bipartite structure of inteins is mirrored by the functional independence of the protein-splicing domain, the entire endonuclease component was deleted from the Mycobacterium tuberculosis recA intein. Guided by computer modeling studies, and taking advantage of genetic systems designed to monitor intein function, the 440-aa Mtu recA intein was reduced to a functional mini-intein of 137 aa. The accuracy of splicing of several mini-inteins was verified. This work not only substantiates structure predictions for intein function but also supports the hypothesis that, like group I introns, mobile inteins arose by an endonuclease gene invading a sequence encoding a small, functional splicing element.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast splicing factor Prp43, a DEAH box protein of the putative RNA helicase/RNA-dependent NTPase family, is a splicing factor that functions late in the pre-mRNA splicing pathway to facilitate spliceosome disassembly. In this paper we report cDNA cloning and characterization of mDEAH9, an apparent mammalian homologue of Prp43. Amino acid sequence comparison revealed that the two proteins are ≈65% identical over a 500-aa region spanning the central helicase domain and the C-terminal region. Expression of mDEAH9 in S. cerevisiae bearing a temperature-sensitive mutation in prp43 was sufficient to restore growth at the nonpermissive temperature. This functional complementation was specific, as mouse mDEAH9 failed to complement mutations in related splicing factor genes prp16 or prp22. Finally, double label immunofluorescence experiments performed with mammalian cells revealed colocalization of mDEAH9 and splicing factor SC35 in punctate nuclear speckles. Thus, the hypothesis that mDEAH9 represents the mammalian homologue of yeast Prp43 is supported by its high sequence homology, functional complementation, and colocalization with a known splicing factor in the nucleus. Our results provide additional support for the hypothesis that the spliceosomal machinery that mediates regulated, dynamic changes in conformation of pre-mRNA and snRNP RNAs has been highly conserved through evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulators of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Gi but not by Gs class α-subunits. All RGS proteins share a conserved 120-amino acid sequence termed the RGS domain. We have demonstrated that the RGS domains of RGS4, RGS10, and GAIP retain GTPase accelerating activity with the Gi class substrates Giα1, Goα, and Gzα in vitro. No regulatory activity of the RGS domains was detected for Gsα. Short deletions within the RGS domain of RGS4 destroyed GTPase activating protein activity and Giα1 substrate binding. Comparable protein–protein interactions between Giα1–GDP–AlF4− and the RGS domain or full-length RGS4 were detected using surface plasmon resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein Sex-lethal (SXL) controls pre-mRNA splicing of two genes involved in Drosophila sex determination: transformer (tra) and the Sxl gene itself. Previous in vitro results indicated that SXL antagonizes the general splicing factor U2AF65 to regulate splicing of tra. In this report, we have used transgenic flies expressing chimeric proteins between SXL and the effector domain of U2AF65 to study the mechanisms of splicing regulation by SXL in vivo. Conferring U2AF activity to SXL relieves its inhibitory activity on tra splicing but not on Sxl splicing. Therefore, antagonizing U2AF65 can explain tra splicing regulation both in vitro and in vivo, but this mechanism cannot explain splicing regulation of Sxl pre-mRNA. These results are a direct proof that Sxl, the master regulatory gene in sex determination, has multiple and separable activities in the regulation of pre-mRNA splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conserved CDC5 family of Myb-related proteins performs an essential function in cell cycle control at G2/M. Although c-Myb and many Myb-related proteins act as transcription factors, herein, we implicate CDC5 proteins in pre-mRNA splicing. Mammalian CDC5 colocalizes with pre-mRNA splicing factors in the nuclei of mammalian cells, associates with core components of the splicing machinery in nuclear extracts, and interacts with the spliceosome throughout the splicing reaction in vitro. Furthermore, genetic depletion of the homolog of CDC5 in Saccharomyces cerevisiae, CEF1, blocks the first step of pre-mRNA processing in vivo. These data provide evidence that eukaryotic cells require CDC5 proteins for pre-mRNA splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural fate specification in Drosophila is promoted by the products of the proneural genes, such as those of the achaete–scute complex, and antagonized by the products of the Enhancer of split [E(spl)] complex, hairy, and extramacrochaetae. As all these proteins bear a helix-loop-helix (HLH) dimerization domain, we investigated their potential pairwise interactions using the yeast two-hybrid system. The fidelity of the system was established by its ability to closely reproduce the already documented interactions among Da, Ac, Sc, and Extramacrochaetae. We show that the seven E(spl) basic HLH proteins can form homo- and heterodimers inter-se with distinct preferences. We further show that a subset of E(spl) proteins can heterodimerize with Da, another subset can heterodimerize with proneural proteins, and yet another with both, indicating specialization within the E(spl) family. Hairy displays no interactions with any of the HLH proteins tested. It does interact with the non-HLH protein Groucho, which itself interacts with all E(spl) basic HLH proteins, but with none of the proneural proteins or Da. We investigated the structural requirements for some of these interactions by site-specific and deletion mutagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3′ splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3′ splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5′ region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54–55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3′ end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

tRNA splicing in the yeast Saccharomyces cerevisiae requires an endonuclease to excise the intron, tRNA ligase to join the tRNA half-molecules, and 2′-phosphotransferase to transfer the splice junction 2′-phosphate from ligated tRNA to NAD, producing ADP ribose 1′′–2′′ cyclic phosphate (Appr>p). We show here that functional 2′-phosphotransferases are found throughout eukaryotes, occurring in two widely divergent yeasts (Candida albicans and Schizosaccharomyces pombe), a plant (Arabidopsis thaliana), and mammals (Mus musculus); this finding is consistent with a role for the enzyme, acting in concert with ligase, to splice tRNA or other RNA molecules. Surprisingly, functional 2′-phosphotransferase is found also in the bacterium Escherichia coli, which does not have any known introns of this class, and does not appear to have a ligase that generates junctions with a 2′-phosphate. Analysis of the database shows that likely members of the 2′-phosphotransferase family are found also in one other bacterium (Pseudomonas aeruginosa) and two archaeal species (Archaeoglobus fulgidus and Pyrococcus horikoshii). Phylogenetic analysis reveals no evidence for recent horizontal transfer of the 2′-phosphotransferase into Eubacteria, suggesting that the 2′-phosphotransferase has been present there since close to the time that the three kingdoms diverged. Although 2′-phosphotransferase is not present in all Eubacteria, and a gene disruption experiment demonstrates that the protein is not essential in E. coli, the continued presence of 2′-phosphotransferase in Eubacteria over large evolutionary times argues for an important role for the protein.