381 resultados para Soliton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a solitary solution of the three-wave nonlinear partial differential equation (PDE) model - governing resonant space-time stimulated Brillouin or Raman backscattering - in the presence of a cw pump and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experiments. As a result of the instability any initial bounded Stokes signal is amplified and evolves to a subluminous backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains the asymptotic steady regime. © 1997 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It's believed that the simple Su-Schrieffer-Heeger Hamiltonian can not predict the insulator to metal transition of transpolyacetylene (t-PA). The soliton lattice configuration at a doping level y=6% still has a semiconductor gap. Disordered distributions of solitons close the gap, but the electronic states around the Fermi energy are localized. However, within the same framework, it is possible to show that a cluster of solitons can produce dramatic changes in the electronic structure, allowing an insulator-to-metal transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a bright matter wave soliton in a quasi one-dimensional Bose-Einstein condensate (BEC) with a periodically rapidly varying time trap is considered. The governing equation is based on averaging the fast modulations of the Gross-Pitaevskii (GP) equation. This equation has the form of a GP equation with an effective potential of a more complicated structure than an unperturbed trap. In the case of an inverted (expulsive) quadratic trap corresponding to an unstable GP equation, the effective potential can be stable. For the bounded space trap potential it is showed that bifurcation exists, i.e. the single-well potential bifurcates to the triple-well effective potential. The stabilization of a BEC cloud on-site state in the temporary modulated optical lattice is found. This phenomenon is analogous to the Kapitza stabilization of an inverted pendulum. The analytical predictions of the averaged GP equation are confirmed by numerical simulations of the full GP equation with rapid perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation we study the dynamics of interaction among vortex solitons in a rotating matter-wave bright soliton train in a radially trapped and axially free Bose-Einstein condensate to understand certain features of the experiment by Strecker et al (2002 Nature 417 150). In a soliton train, solitons of opposite phase (phase δ = π) repel and stay apart without changing shape; solitons with δ = 0 attract, interact and coalesce, but eventually come out; solitons with a general δ usually repel but interact inelastically by exchanging matter. We study this and suggest future experiments with vortex solitons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of the dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodically time-modulated atomic scattering length [Feshbach-resonance management (FRM)] was discussed. The slow and rapid modulations, in comparison with the tunneling frequency were considered. An averaged equation, which was a generalized discrete nonlinear Schrödinger equation, including higher-order effective nonlinearities and intersite nonlinear interactions was derived in the case of the rapid modulation. It was demonstrated that the modulations of sufficient strength results in splitting of the soliton by direct simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experimental and theoretical advances in the creation and description of bright matter wave solitons are reviewed. Several aspects are taken into account, including the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton interactions, and propagation in the presence of inhomogeneities. The generation of stable bright solitons by means of Feshbach resonance techniques is also discussed. © World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study an ultracold and dilute superfluid Bose-Fermi mixture confined in a strictly one-dimensional (1D) atomic waveguide by using a set of coupled nonlinear mean-field equations obtained from the Lieb-Liniger energy density for bosons and the Gaudin-Yang energy density for fermions. We consider a finite Bose-Fermi interatomic strength gbf and both periodic and open boundary conditions. We find that with periodic boundary conditions-i.e., in a quasi-1D ring-a uniform Bose-Fermi mixture is stable only with a large fermionic density. We predict that at small fermionic densities the ground state of the system displays demixing if gbf >0 and may become a localized Bose-Fermi bright soliton for gbf <0. Finally, we show, using variational and numerical solutions of the mean-field equations, that with open boundary conditions-i.e., in a quasi-1D cylinder-the Bose-Fermi bright soliton is the unique ground state of the system with a finite number of particles, which could exhibit a partial mixing-demixing transition. In this case the bright solitons are demonstrated to be dynamically stable. The experimental realization of these Bose-Fermi bright solitons seems possible with present setups. © 2007 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply a physical principle, previously used to eliminate ambiguities in quantum corrections to the two-dimensional kink, to the case of spinning strings moving in AdS4×CP3, thought of as another kind of two-dimensional soliton. We find that this eliminates the ambiguities and selects the result compatible with AdS/CFT, providing a solid foundation for one of the previous calculations, which found agreement. The method can be applied to other classical string «solitons.» © 2013 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schrödinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of an Ŝℓ2Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows. The equivalence between the latter and the massive Thirring model is also explicitly demonstrated. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation. © 2013 IOP Publishing Ltd.