865 resultados para Solar-system
Resumo:
Observation has widely shown for nearly all last century that the Spanish (Dynamic) Maritime Climate was following around 10 to 11 year cycles in its most significant figure, wind wave, despite it being better to register cycles of 20 to 22 years, in analogical way with the semi-diurnal and diurnal cycles of Cantabrian tides. Those cycles were soon linked to sun activity and, at the end of the century, the latter was related to the Solar System evolution. We know now that waves and storm surges are coupled and that (Dynamic) Maritime Climate forms part of a more complex “Thermal Machine” including Hydrological cycle. The analysis of coastal floods could so facilitate the extension of that experience. According to their immediate cause, simple flood are usually sorted out into flash, pluvial, fluvial, groundwater and coastal types, considering the last as caused by sea waters. But the fact is that most of coastal floods are the result of the concomitance of several former simple types. Actually, the several Southeastern Mediterranean coastal flood events show to be the result of the superposition within the coastal zone of flash, fluvial, pluvial and groundwater flood types under boundary condition imposed by the concomitant storm sea level rise. This work shall be regarded as an attempt to clarify that cyclic experience, through an in-depth review of a past flood events in Valencia (Turia and Júcar basins), as in Murcia (Segura’s) as well.
Resumo:
Motivado por los últimos hallazgos realizados gracias a los recientes avances tecnológicos y misiones espaciales, el estudio de los asteroides ha despertado el interés de la comunidad científica. Tal es así que las misiones a asteroides han proliferado en los últimos años (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) incentivadas por su enorme interés científico. Los asteroides son constituyentes fundamentales en la evolución del Sistema Solar, son además grandes concentraciones de valiosos recursos naturales, y también pueden considerarse como objectivos estratégicos para la futura exploración espacial. Desde hace tiempo se viene especulando con la posibilidad de capturar objetos próximos a la Tierra (NEOs en su acrónimo anglosajón) y acercarlos a nuestro planeta, permitiendo así un acceso asequible a los mismos para estudiarlos in-situ, explotar sus recursos u otras finalidades. Por otro lado, las asteroides se consideran con frecuencia como posibles peligros de magnitud planetaria, ya que impactos de estos objetos con la Tierra suceden constantemente, y un asteroide suficientemente grande podría desencadenar eventos catastróficos. Pese a la gravedad de tales acontecimientos, lo cierto es que son ciertamente difíciles de predecir. De hecho, los ricos aspectos dinámicos de los asteroides, su modelado complejo y las incertidumbres observaciones hacen que predecir su posición futura con la precisión necesaria sea todo un reto. Este hecho se hace más relevante cuando los asteroides sufren encuentros próximos con la Tierra, y más aún cuando estos son recurrentes. En tales situaciones en las cuales fuera necesario tomar medidas para mitigar este tipo de riesgos, saber estimar con precisión sus trayectorias y probabilidades de colisión es de una importancia vital. Por ello, se necesitan herramientas avanzadas para modelar su dinámica y predecir sus órbitas con precisión, y son también necesarios nuevos conceptos tecnológicos para manipular sus órbitas llegado el caso. El objetivo de esta Tesis es proporcionar nuevos métodos, técnicas y soluciones para abordar estos retos. Las contribuciones de esta Tesis se engloban en dos áreas: una dedicada a la propagación numérica de asteroides, y otra a conceptos de deflexión y captura de asteroides. Por lo tanto, la primera parte de este documento presenta novedosos avances de apliación a la propagación dinámica de alta precisión de NEOs empleando métodos de regularización y perturbaciones, con especial énfasis en el método DROMO, mientras que la segunda parte expone ideas innovadoras para la captura de asteroides y comenta el uso del “ion beam shepherd” (IBS) como tecnología para deflectarlos. Abstract Driven by the latest discoveries enabled by recent technological advances and space missions, the study of asteroids has awakened the interest of the scientific community. In fact, asteroid missions have become very popular in the recent years (Hayabusa, Dawn, OSIRIX-REx, ARM, AIMS-DART, ...) motivated by their outstanding scientific interest. Asteroids are fundamental constituents in the evolution of the Solar System, can be seen as vast concentrations of valuable natural resources, and are also considered as strategic targets for the future of space exploration. For long it has been hypothesized with the possibility of capturing small near-Earth asteroids and delivering them to the vicinity of the Earth in order to allow an affordable access to them for in-situ science, resource utilization and other purposes. On the other side of the balance, asteroids are often seen as potential planetary hazards, since impacts with the Earth happen all the time, and eventually an asteroid large enough could trigger catastrophic events. In spite of the severity of such occurrences, they are also utterly hard to predict. In fact, the rich dynamical aspects of asteroids, their complex modeling and observational uncertainties make exceptionally challenging to predict their future position accurately enough. This becomes particularly relevant when asteroids exhibit close encounters with the Earth, and more so when these happen recurrently. In such situations, where mitigation measures may need to be taken, it is of paramount importance to be able to accurately estimate their trajectories and collision probabilities. As a consequence, advanced tools are needed to model their dynamics and accurately predict their orbits, as well as new technological concepts to manipulate their orbits if necessary. The goal of this Thesis is to provide new methods, techniques and solutions to address these challenges. The contributions of this Thesis fall into two areas: one devoted to the numerical propagation of asteroids, and another to asteroid deflection and capture concepts. Hence, the first part of the dissertation presents novel advances applicable to the high accuracy dynamical propagation of near-Earth asteroids using regularization and perturbations techniques, with a special emphasis in the DROMO method, whereas the second part exposes pioneering ideas for asteroid retrieval missions and discusses the use of an “ion beam shepherd” (IBS) for asteroid deflection purposes.
Resumo:
We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.
Resumo:
These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions.
Resumo:
The electron microprobe allows elemental abundances to be mapped at the μm scale, but until now high resolution mapping of light elements has been challenging. Modifications of electron microprobe procedure permit fine-scale mapping of carbon. When applied to permineralized fossils, this technique allows simultaneous mapping of organic material, major matrix-forming elements, and trace elements with μm-scale resolution. The resulting data make it possible to test taphonomic hypotheses for the formation of anatomically preserved silicified fossils, including the role of trace elements in the initiation of silica precipitation and in the prevention of organic degradation. The technique allows one to understand the localization of preserved organic matter before undertaking destructive chemical analyses and, because it is nondestructive, offers a potentially important tool for astrobiological investigations of samples returned from Mars or other solar system bodies.
Resumo:
The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.
Resumo:
Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 μm were obtained, complemented in some cases with observations at 70 μm, and at 250, 350 and 500 μm using SPIRE. The observing strategy was to integrate as deep as possible at 100 μm to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of ~12.1% ± 5% before Herschel to ~20.2% ± 2%. A significant fraction (~52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70–160 μm range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T_ eq up to 2,000 K, to those of a few Earth masses, with T _eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
More than ever alternative energy solutions are being discussed including potential legislative action. With the use of fossil fuels being the most abundant and most controversial sources of energy, new solutions must be found. This paper looks at the economic and technical feasibility of different types of alternative energy and cogeneration applications within a steel mill. This paper examines alternative energy systems. The systems examined include Solar systems, thermal electric materials, and an Organic Rankine Cycle cogeneration project. None of the projects has limiting technical feasibility issues however each of the projects face economically limiting factors. Taking into account tangible and non-tangible factors the solar system and Organic Rankine Cycle cogeneration project are recommended for further study and potential installation.
Resumo:
The diary and commonplace book of Perez Fobes is written on unlined pages in a notebook with a sewn binding at the top of the pages; only the edge of the original leather softcover remain. The volume holds handwritten entries added irregularly from August 23, 1759 until December 1760 while Fobes was a student at Harvard College. The topics range from the irreverent, to the mundane, to the theological and scientific. The notebook serves to chronicle both his daily activities, such as books he read, lectures he attended, and travel, as well as a place to note humorous sayings, transcribe book passages, or ponder religious ideas such as original sin. In the volume, Fobes devotes considerable space to the subject of astronomy, and drew a picture of the "The Solar System Serundum Coper[nici] with the Or[bit] of 5 Remarkable Comets." At the back of the book, on unattached pages is a short personal dictionary for the letters A-K kept by Fobes.
Resumo:
Are there planets beyond our solar system? What may appear quite plausible now had only been a hypothesis until about twenty years ago. The search for exoplanets is driven by the interest in the “habitable” ones among them. Could such planets one day in the far future provide resources or even shelter for humankind? Will we find one day a habitable planet that is even inhabited? These kinds of imaginative speculations drive public interest in the subject. Imagining alien intelligent life in the universe is not at all new. When Ted Peters called for establishing the field of “astrotheology,” he was certainly thinking less of historical precedents than of something analogous to the emerging field of astrobiology. Will astrotheology result in the decentering of humanity in cosmic dimensions? One could also conclude that we are alone, at least for all practical purposes.
Resumo:
Mode of access: Internet.
Resumo:
Each of the 11 volumes has special t.p.
Resumo:
Tr. of : De ultimo judicio et de Bablylonia destructa.
Resumo:
Thesis (Master's)--University of Washington, 2016-06