939 resultados para Sodium iron ethylenediaminetetraacetic acid
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.
Resumo:
Bile acids are important steroid-derived molecules essential for fat absorption in the small intestine. They are produced in the liver and secreted into the bile. Bile acids are transported by bile flow to the small intestine, where they aid the digestion of lipids. Most bile acids are reabsorbed in the small intestine and return to the liver through the portal vein. The whole recycling process is referred to as the enterohepatic circulation, during which only a small amount of bile acids are removed from the body via faeces. The enterohepatic circulation of bile acids involves the delicate coordination of a number of bile acid transporters expressed in the liver and the small intestine. Organic anion transporting polypeptide 1B1 (OATP1B1), encoded by the solute carrier organic anion transporter family, member 1B1 (SLCO1B1) gene, mediates the sodium independent hepatocellular uptake of bile acids. Two common SNPs in the SLCO1B1 gene are well known to affect the transport activity of OATP1B1. Moreover, bile acid synthesis is an important elimination route for cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme of bile acid production. The aim of this thesis was to investigate the effects of SLCO1B1 polymorphism on the fasting plasma levels of individual endogenous bile acids and a bile acid synthesis marker, and the pharmacokinetics of exogenously administered ursodeoxycholic acid (UDCA). Furthermore, the effects of CYP7A1 genetic polymorphism and gender on the fasting plasma concentrations of individual endogenous bile acids and the bile acid synthesis marker were evaluated. Firstly, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of bile acids was developed (Study I). A retrospective study examined the effects of SLCO1B1 genetic polymorphism on the fasting plasma concentrations of individual bile acids and a bile acid synthesis marker in 65 healthy subjects (Study II). In another retrospective study with 143 healthy individuals, the effects of CYP7A1 genetic polymorphism and gender as well as SLCO1B1 polymorphism on the fasting plasma levels of individual bile acids and the bile acid synthesis marker were investigated (Study III). The effects of SLCO1B1 polymorphism on the pharmacokinetics of exogenously administered UDCA were evaluated in a prospective genotype panel study including 27 healthy volunteers (Study IV). A robust, sensitive and simple HPLC-MS/MS method was developed for the simultaneous determination of 16 individual bile acids in human plasma. The method validation parameters for all the analytes met the requirements of the FDA (Food and Drug Administration) bioanalytical guidelines. This HPLC-MS/MS method was applied in Studies II-IV. In Study II, the fasting plasma concentrations of several bile acids and the bile acid synthesis marker seemed to be affected by SLCO1B1 genetic polymorphism, but these findings were not replicated in Study III with a larger sample size. Moreover, SLCO1B1 polymorphism had no effect on the pharmacokinetic parameters of exogenously administered UDCA. Furthermore, no consistent association was observed between CYP7A1 genetic polymorphism and the fasting plasma concentrations of individual bile acids or the bile acid synthesis marker. In contrast, gender had a major effect on the fasting plasma concentrations of several bile acids and also total bile acids. In conclusion, gender, but not SLCO1B1 or CYP7A1 polymorphisms, has a major effect on the fasting plasma concentrations of individual bile acids. Moreover, the common genetic polymorphism of CYP7A1 is unlikely to influence the activity of CYP7A1 under normal physiological conditions. OATP1B1 does not play an important role in the in vivo disposition of exogenously administered UDCA.
Resumo:
Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5�8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.
Resumo:
Trace of iron(III) are determined by differential pulse polarography in a medium of sodium hydroxide and sodium bromate using the catalytic current. Various cations do not interfere. The relative standard deviation is 2%.
Resumo:
Iron(III) complexes FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4) and benzoi]dipyridro3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized, and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five. electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about 0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage Of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO center dot radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC50 value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total Cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAFT nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.
Resumo:
A regioselective reductive demethoxylation of dimethyl and mixed ketals, using sodium cyanoborohydride in the presence of a catalytic amount of tributylchlorostannane as Lewis acid in refluxing tert-butanol is described.
Resumo:
The Turkevich method for synthesizing gold nanoparticles, using sodium citrate as the reducing agent, is renowned for its ability to produce biocompatible colloids with mean size >10 nm. Here we show that monodisperse gold nanoparticles in the 5-10 nm size range can be synthesized by simply reversing the order of addition of reactants, i.e. adding chloroauric acid to citrate solution. Kinetic studies and electron microscopic characterization revealed that the reactivity of chloroauric acid, initial molar ratio of citrate to chloroauric acid (MR), and reaction mixture pH play an important role in producing monodisperse gold nanoparticles. Reversing the order of addition also enhanced the stabilization of nanoparticles at high MR values. Remarkably, the system exhibits a `memory' of the order of addition, even when the timescale of mixing is much shorter than the timescale of synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.
Resumo:
Superabsorbent polymers (SAPs) of acrylic acid, sodium acrylate, and acrylamide (AM), crosslinked with ethylene glycol dimethacrylate, were synthesized by inverse suspension polymerization. The equilibrium swelling capacities of the SAPs were determined and these decreased with increasing AM content. The adsorption of the two cationic dyes, methylene blue and rhodamine 6G, on the dry as well as equilibrium swollen SAPs was investigated. The amount of the dye adsorbed at equilibrium per unit weight of the SAPs and the rate constants of adsorption were determined. The amount of the dye adsorbed at equilibrium by the SAPs decreased with increasing mol % of AM in the SAPs. The amount of the dye adsorbed at equilibrium was almost equal for the dry and equilibrium swollen SAPs. However, the equilibrium swollen SAPs adsorbed dyes at a higher rate than the dry SAPs. The higher rate of adsorption was attributed to the availability of all the anionic groups present in the fully elongated conformation of the SAPs in the equilibrium swollen state. The effect of initial dye concentration on the adsorption was also investigated and the adsorption was described by Langmuir adsorption isotherms. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is similar to 1 mu m and that of Fe/Fe3C magnetic nanoparticles is similar to 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.
Resumo:
An iron(III) salicylate having a dipicolylamine base (andpa) with a photoactive anthracenyl moiety is prepared, characterized, and studied for its photo-induced anticancer activity and cellular localization in HeLa and MCF-7 cells. Its phenyl analogue is structurally characterized by X-ray crystallography. The complex has a ternary structure in which the dipicolylamine ligand and salicylic acid in dianionic form (sal) display respective tridentate and bidentate mode of coordination in Fe(sal)(phdpa)Cl] (1). Complex Fe(sal)(andpa)Cl] (2) having a pendant anthracenyl moiety shows significant photocytotoxicity in visible light (400-700 nm) giving IC50 values of 8.6 +/- 0.7 and 3.4 +/- 0.9 mu M in HeLa and MCF-7 cells, while being essentially nontoxic in the dark (IC50 > 100 mu M). The complex shows cytosolic localization in the cancer cells. Formation of hydroxyl radicals ((OH)-O-center dot) as the reactive oxygen species is evidenced from the pUC19 DNA photocleavage studies. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Threefold symmetric Fe phosphine complexes have been used to model the structural and functional aspects of biological N2 fixation by nitrogenases. Low-valent bridging Fe-S-Fe complexes in the formal oxidation states Fe(II)Fe(II), Fe(II)/Fe(I), and Fe(I)/Fe(I) have been synthesized which display rich spectroscopic and magnetic behavior. A series of cationic tris-phosphine borane (TPB) ligated Fe complexes have been synthesized and been shown to bind a variety of nitrogenous ligands including N2H4, NH3, and NH2
Treatment of an anionic FeN2 complex with excess acid also results in the formation of some NH3, suggesting the possibility of a catalytic cycle for the conversion of N2 to NH3 mediated by Fe. Indeed, use of excess acid and reductant results in the formation of seven equivalents of NH3 per Fe center, demonstrating Fe mediated catalytic N2 fixation with acids and protons for the first time. Numerous control experiments indicate that this catalysis is likely being mediated by a molecular species.
A number of other phosphine ligated Fe complexes have also been tested for catalysis and suggest that a hemi-labile Fe-B interaction may be critical for catalysis. Additionally, various conditions for the catalysis have been investigated. These studies further support the assignment of a molecular species and delineate some of the conditions required for catalysis.
Finally, combined spectroscopic studies have been performed on a putative intermediate for catalysis. These studies converge on an assignment of this new species as a hydrazido(2-) complex. Such species have been known on group 6 metals for some time, but this represents the first characterization of this ligand on Fe. Further spectroscopic studies suggest that this species is present in catalytic mixtures, which suggests that the first steps of a distal mechanism for N2 fixation are feasible in this system.
Resumo:
In order to develop better catalysts for the cleavage of aryl-X bonds fundamental studies of the mechanism and individual steps of the mechanism have been investigated in detail. As the described studies are difficult at best in catalytic systems, model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl diphosphine scaffold containing an ether moiety in the central arene was designed. The first three chapters of this dissertation focus on the studies of the nickel complexes supported by this diphosphine backbone and the research efforts in regards to aryl-oxygen bond activation.
Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether ligand scaffolds. The metallation of these scaffolds with nickel is described. The reactivity of these nickel(0) systems is also outlined. The systems were found to typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was found to be a subsequent oxidative addition, β-H elimination, reductive elimination and (or) decarbonylation.
Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether complexes the kinetics of aryl oxygen bond activation was studied. The activation parameters of oxidative addition for the model systems were determined. Little variation was observed in the rate and activation parameters of oxidative addition with varying electronics in the model system. The cause of the lack of variation is due to the ground state and oxidative addition transition state being affected similarly. Attempts were made to extend this study to catalytic systems.
Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It was found that the addition of certain metal alkyls to the nickel(0) model system lead to an increase in the rate of aryl oxygen bond activation. The addition of excess Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond activation. Similarly the addition of AlMe3 led to a three order of magnitude rate increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which was identified by NOESY correlations as a system in which the AlMe3 is coordinated to the ether moiety of the backbone. The rates and activation parameters of aryl oxygen bond activation in the presence of AlMe3 were investigated.
The last two chapters involve the study of metalla-macrocycles as ligands. Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol precursors and their metallation with aluminum. The coordination chemistry of iron on the aluminum scaffolds was investigated. Varying the electronics of the aluminum macrocycle was found to affect the observed electrochemistry of the iron center.
Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of the cobalt complexes was investigated. The electrochemistry was compared to the observed electrochemistry of a zinc analog to identify the redox activity of the ligand. In the presence of acid the cobalt complexes were found to electrochemically reduce protons to dihydrogen. The electronics of the ancillary aluminum ligands were found to affect the potential of proton reduction in the cobalt complexes. These potentials were compared to other diglyoximate complexes.
Quantitative, Time-Resolved Proteomic Analysis Using Bio-Orthogonal Non-Canonical Amino Acid Tagging
Resumo:
Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.
Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.
Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.
In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.
In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.
Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.
Resumo:
The purpose of this work is a contribution to the quantitative record of the use of iron by planktonic algae. Preliminary experiments with Chlorella to determine the rate of iron intake in the presence of inorganic sources of iron did not produce the desired result. The crucial point of this work is the investigation of the influence of various external factors on the stability of FeEDTA (FeEDTA = Ferric(III)-compound of ethylene-diamine tetra-acetic acid), since this compound appears to be particularly well-suited as a source of iron for planktonic algae (e.g. TAMIYA et al. 1953). Cultures of Chlorella fusca in a light thermostat were used in experimental research. Methods and results are discussed.