968 resultados para Site characterization
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K-m (4.41 mu M) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN. (c) 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Canavan disease, an inherited leukodystrophy, is caused by mutations in the aspartoacylase (ASPA) gene. It is most common among children of Ashkenazi Jewish descent but has been diagnosed in many diverse ethnic groups. Two mutations comprise the majority of mutant alleles in Jewish patients, while mutations in the ASPA gene among non-Jewish patients are different and more diverse. In the present study, the ASPA gene was analysed in 22 unrelated non-Jewish patients with Canavan disease, and 24 different mutations were found. of these,14 are novel, including five missense mutations (E24G, D68A, D249V, C152W, H244R), two nonsense mutations (Q184X, E214X), three deletions (923delT, 33del13, 244delA), one insertion mutation (698insC), two sequence variations in one allele ([10T>G; 11insG]), an elimination of the stop codon (941A>G, TAG-->TGG, X314W), and one splice acceptor site mutation (IVS1 - 2A>T). The E24G mutation resulted in substitution of an invariable amino acid residue (Glu) in the first esterase catalytic domain consensus sequence. The IVS1 - 2A>T mutation caused the retention of 40 nucleotides of intron 1 upstream of exon 2. The results of transient expression of the mutant ASPA cDNA containing these mutations in COS-7 cells and assays for ASPA activity of patient fibroblasts indicated that these mutations were responsible for the enzyme deficiency. In addition, patients with the novel D249V mutation manifested clinically at birth and died early. Also, patients with certain other novel mutations, including C152W, E214X, X314W, and frameshift mutations in both alleles, developed clinical manifestations at an earlier age than in classical Canavan disease.
Resumo:
The density and distribution of T cells, T helper cells, macrophages and B cells at the site of skin tests with a cytoplasmic Paracoccidioides brasiliensis antigen (paracoccidioidin) was studied at 24 and 48 h post-challenge in 10 patients with the chronic form of paracoccidioidomycosis and in 5 noninfected individuals. The in situ study was carried out using immunoperoxidase techniques and monoclonal antibodies. The controls showed negative skin test. In the patients, the great majority of the cells in the perivascular foci were T cells (CD43-positive cells) making up 47% and 48.6% of the total number of cells at 24 and 48 h respectively. Most of the T cells showed a T helper phenotype (CD45RO-positive cells). Approximately 25% of the cells were macrophages (CD68-positive cells) and there were very few B lymphocytes (CD20-positive cells). The present data on the microanatomy of paracoccidioidin skin test sites were consistent with a delayed type hypersensitivity pattern. Our results were comparable to those reported on skin tests for other granulomatous chronic diseases.
Resumo:
A fibrino(geno)lytic nonhemorrhagic metalloprotease (neuwiedase) was purified from Bothrops neuwiedi snake venom by a single chromatographic step procedure on a CM-Sepharose column, Neuwiedase represented 4.5% (w/w) of the crude desiccated venom, with an approximate Mr of 20,000 and pI 5.9, As regards the amino acid composition, neuwiedase showed similarities with other metalloproteases, with high proportions of Asx, Glx, Leu, and Ser, Atomic absorption spectroscopy showed that one mole of Zn2+ and one mole of Ca2+ were present per mole olf protein. The cDNA encoding neuwiedase was isolated by RT-PCR from venom gland RNA, using oligonucleotides based on the partially determined amino-acid sequences of this metalloprotease. The fall sequence contained approximately 594 bp, which codified the 198 amino acid residues with an estimated molecular weight of 22,375. Comparison of the nucleotide and amino acid sequences of neuwiedase with those of other snake venom metalloproteases showed a high level of sequential similarity, Neuwiedase has two highly conserved characteristics sequences H(142)E(143)XXH(146)XXG(140)XXH(152) and C164I165M166. The three-dimensional structure of neuwiedase was modeled based on the crystal structure of Crotalus adamanteus Adamalysin II. This model revealed that the zinc binding site region showed a I high structural similarity with other metalloproteases,, the proteolyitc specificity, using the B beta-chain of oxidized insulin as substrate, was shown to be directed to the Ala(14)-Leu(15) and Tyr(16)-Leu(17) peptide bonds which were preferentially hydrolyzed. Neuwiedase is a A alpha,B beta fibrinogenase, Its activity upon the A alpha chain of fibrinogen was detected within 15 min of incubation. The optimal temperature and pH for the degradation of both A alpha and B beta chains were 37 degrees C and 7.4-8.0, respectively. This activity was inhibited by EDTA and 1,10-phenantroline, Neuwiedase also showed proteolytic activity upon fibrin and some components of the extracellular matrix. However, it did not show TAME esterase activity and was not able to inhibit platelet aggregation. (C) 2000 Academic Press.
Resumo:
The urocortin (UCN)-like immunoreactivity and UCN mRNA distribution in various regions of the nonprimate mammalian brain have been reported. However, the Edinger-Westphal nucleus (EW) appears to be the only brain site where UCN expression is conserved across species. Although UCN peptides are present throughout vertebrate phylogeny, the functional roles of both UCN and EW remain poorly understood. Therefore, a study focused on UCN system organization in the primate brain is warranted. By using immunohistochemistry (single and double labeling) and in situ hybridization, we have characterized the organization of UCN-expressing cells and fibers in the central nervous system and pituitary of the capuchin monkey (Cebus apella). In addition, the sequence of the prepro-UCN was determined to establish the level of structural conservation relative to the human sequence. To understand the relationship of acetylcholine cells in the EW, a colocalization study comparing choline acetyltransferase (ChAT) and UCN was also performed. The cloned monkey prepro-UCN is 95% identical to the human preprohormone across the matched sequences. By using an antiserum raised against rat UCN and a probe generated from human cDNA, we found that the EW is the dominant site for UCN expression, although UCN mRNA is also expressed in spinal cord lamina IX. Labeled axons and terminals were distributed diffusely throughout many brain regions and along the length of the spinal cord. of particular interest were UCN-immunoreactive inputs to the medial preoptic area, the paraventricular nucleus of the hypothalamus, the oral part of the spinal trigeminal nucleus, the flocculus of the cerebellum, and the spinal cord laminae VII and X. We found no UCN hybridization signal in the pituitary. In addition, we observed no colocalization between ChAT and UCN in EW neurons. Our results support the hypothesis that the UCN system might participate in the control of autonomic, endocrine, and sensorimotor functions in primates.
Resumo:
Small nuclear ribonucleoproteins (snRNPs)are involved in trans-splicing processing of pre-mRNA in Trypanosoma cruzi. To clone T. cruzi snRNPs we screened an epimastigote cDNA library with a purified antibody raised against the Sm-binding site of a yeast sequence. A clone was obtained containing a 507 bp-insert with an ORF of 399 bp and coding for a protein of 133 amino acids. Sequence analysis revealed high identity with the L27 ribosomal proteins from different species including: Canis familiaris, Homo sapiens, Schizosaccharomyces pombe and Saccharomyces cerevisiae. This protein has not been previously described in the literature and seems to be a new ribosomal protein in T. cruzi and was given the code TcrL27. To express this recombinant T. cruzi L27 ribosomal protein in E. coli, the insert was subcloned into the pET32a vector and a 26 kDa recombinant protein was purified. Immunoblotting studies demonstrated that this purified recombinant protein was recognized by the same anti-Sm serum used in the library screening as well as by chagasic and systemic lupus erythemathosus (SLE) sera. Our results suggest that the T. cruzi L27 ribosomal protein may be involved in autoimmunity of Chagas disease.
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
Resumo:
We have analyzed 16 missense mutations of the tissue-nonspecific AP (TNAP) gene found in patients with hypophosphatasia. These mutations span the phenotypic spectrum of the disease, from the lethal perinatal/infantile forms to the less severe adult and odontohypophosphatasia. Site-directed mutagenesis was used to introduce a sequence tag into the TNAP cDNA and eliminate the glycosylphosphatidylinositol (GPI)-anchor recognition sequence to produce a secreted epitope-tagged TNAP (setTNAP). The properties of GPI-anchored TNAP (gpiTNAP) and setTNAP were found comparable. After introducing each single hypophosphatasia mutation, the setTNAP and mutant TNAP cDNAs were expressed in COS-1 cells and the recombinant flagged enzymes were affinity purified. We characterized the kinetic behavior, inhibition, and heat stability properties of each mutant using the artificial substrate p-nitrophenylphosphate (pNPP) at pH 9.8. We also determined the ability of the mutants to metabolize two natural substrates of TNAP, that is, pyridoxal-5'-phosphate (PLP) and inorganic pyrophosphate (PPi), at physiological pH. Six of the mutant enzymes were completely devoid of catalytic activity (R54C, R54P, A94T, R206W, G317D, and V365I), and 10 others (A16V, A115V, A160T, A162T, E174K, E174G, D277A, E281K, D361V, and G439R) showed various levels of residual activity. The A160T substitution was found to decrease the catalytic efficiency of the mutant enzyme toward pNPP to retain normal activity toward PPi and to display increased activity toward PLP. The A162T substitution caused a considerable reduction in the pNPPase, PPiase, and PLPase activities of the mutant enzyme. The D277A mutant was found to maintain high catalytic efficiency toward pNPP as substrate but not against PLP or PPi. Three mutations ( E174G, E174K, and E281K) were found to retain normal or slightly subnormal catalytic efficiency toward pNPP and PPi but not against PLP. Because abnormalities in PLP metabolism have been shown to cause epileptic seizures in mice null for the TNAP gene, these kinetic data help explain the variable expressivity of epileptic seizures in hypophosphatasia patients.
Resumo:
SrMoO4 doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr1-xEuxMoO4 powders, where x = 0.01; 0.03 and 0.05, were synthesized by Complex Polymerization (CP) Method. The structural and optical properties of the SrMoO4:Eu3+ were analyzed by powder X-ray diffraction patterns, Fourier Transform Infra-Red (FTIR), Raman Spectroscopy, and through Photoluminescent Measurements (PL). Only a crystalline scheelite-type phase was obtained when the powders were heat-treated at 800 A degrees C for 2 h, 2 theta = 27.8A degrees (100% peak). The excitation spectra of the SrMoO4:Eu3+ (lambda(Em.) = 614 nm) presented the characteristic band of the Eu3 + 5L6 transition at 394 nm and a broad band at around 288 nm ascribed to the charge-transfer from the O (2p) state to the Mo (4d) one in the SrMoO4 matrix. The emission spectra of the SrMoO4:Eu3+ powders (lambda(Exc.) = 394 and 288 nm) show the group of sharp emission bands among 523-554 nm and 578-699 nm, assigned to the D-5(1)-> F-7(0,1and 2) and D-5(0)-> F-7(0,1,2,3 and 4), respectively. The band related to the D-5(0)-> F-7(0) transition indicates the presence of Eu3+ site without inversion center. This hypothesis is strengthened by the fact that the band referent to the D-5(0)-> F-7(2) transition is the most intense in the emission spectra.
Resumo:
We have developed a biodegradable composite scaffold for bone tissue engineering applications with a pore size and interconnecting macroporosity similar to those of human trabecular bone. The scaffold is fabricated by a process of particle leaching and phase inversion from poly(lactide-co-glycolide) (PLGA) and two calcium phosphate (CaP) phases both of which are resorbable by osteoclasts; the first a particulate within the polymer structure and the second a thin ubiquitous coating. The 3-5 mu m thick osteoconductive surface CaP abrogates the putative foreign body giant cell response to the underlying polymer, while the internal CaP phase provides dimensional stability in an otherwise highly compliant structure. The scaffold may be used as a biomaterial alone, as a carrier for cells or a three-phase drug delivery device. Due to the highly interconnected macroporosity ranging from 81% to 91%, with macropores of 0.8 similar to 1.8 mm, and an ability to wick up blood, the scaffold acts as both a clot-retention device and an osteoconductive support for host bone growth. As a cell delivery vehicle, the scaffold can be first seeded with human mesenchymal cells which can then contribute to bone formation in orthotopic implantation sites, as we show in immune-compromised animal hosts. We have also employed this scaffold in both lithomorph and particulate forms in human patients to maintain alveolar bone height following tooth extraction, and augment alveolar bone height through standard sinus lift approaches. We provide a clinical case report of both of these applications; and we show that the scaffold served to regenerate sufficient bone tissue in the wound site to provide a sound foundation for dental implant placement. At the time of writing, such implants have been in occlusal function for periods of up to 3 years in sites regenerated through the use of the scaffold.
Resumo:
Proteins containing the classical nuclear localization sequences (NLSs) are imported into the nucleus by the importin-α/β heterodimer. Importin-α contains the NLS binding site, whereas importin-β mediates the translocation through the nuclear pore. We characterized the interactions involving importin-α during nuclear import using a combination of biophysical techniques (biosensor, crystallography, sedimentation equilibrium, electrophoresis, and circular dichroism). Importin-α is shown to exist in a monomeric autoinhibited state (association with NLSs undetectable by biosensor). Association with importin-β (stoichiometry, 1:1; K D = 1.1 × 10 -8 M) increases the affinity for NLSs; the importin-α/β complex binds representative monopartite NLS (simian virus 40 large T-antigen) and bipartite NLS (nucleoplasmin) with affinities (K D = 3.5 × 10 -8 M and 4.8 × 10 -8 M, respectively) comparable with those of a truncated importin-α lacking the autoinhibitory domain (T-antigen NLS, K D = 1.7 × 10 -8 M; nucleoplasmin NLS, K D = 1.4 × 10 -8 M). The autoinhibitory domain (as a separate peptide) binds the truncated importin-α, and the crystal structure of the complex resembles the structure of full-length importin-α. Our results support the model of regulation of nuclear import mediated by the intrasteric autoregulatory sequence of importin-α and provide a quantitative description of the binding and regulatory steps during nuclear import.
Resumo:
The purpose of this work was to purify a protease from Penicillium waksmanii and to determine its biochemical characteristics and specificity. The extracellular protease isolated that was produced by P. waksmanii is a serine protease that is essential for the reproduction and growth of the fungus. The protease isolated showed 32 kDa, and has optimal activity at pH 8.0 and 35 C towards the substrate Abz-KLRSSKQ-EDDnp. The protease is active in the presence of CaCl2, KCl, and BaCl, and partially inhibited by CuCl2, CoCl2 and totally inhibited by AlCl3 and LiCl. In the presence of 1 M urea, the protease remains 50 % active. The activity of the protease increases 60 % when it is exposed to 0.4 % nonionic surfactant-Triton X-100 and loses 10 % activity in the presence of 0.4 % Tween-80. Using fluorescence resonance energy transfer analysis, the protease showed the most specificity for the peptide Abz-KIRSSKQ-EDDnp with k cat/K m of 10,666 mM-1 s-1, followed by the peptide Abz-GLRSSKQ-EDDnp with a k cat/K m of 7,500 mM -1 s-1. Basic and acidic side chain-containing amino acids performed best at subsite S1. Subsites S2, S3, S′ 2, and S′ 1, S ′ 3 showed a preference for binding for amino acids with hydrophobic and basic amino acid side chain, respectively. High values of k cat/K m were observed for the subsites S2, S3, and S′ 2. The sequence of the N-terminus (ANVVQSNVPSWGLARLSSKKTGTTDYTYD) showed high similarity to the fungi Penicillium citrinum and Penicillium chrysogenum, with 89 % of identity at the amino acid level. © 2012 Springer Science+Business Media New York.
Resumo:
Neurospora crassa has been widely used as a model organism and contributed to the development of biochemistry and molecular biology by allowing the identification of many metabolic pathways and mechanisms responsible for gene regulation. Nuclear proteins are synthesized in the cytoplasm and need to be translocated to the nucleus to exert their functions which the importin-α receptor has a key role for the classical nuclear import pathway. In an attempt to get structural information of the nuclear transport process in N. crassa, we present herein the cloning, expression, purification and structural studies with N-terminally truncated IMPα from N. crassa (IMPα-Nc). Circular dichroism analysis revealed that the IMPα-Nc obtained is correctly folded and presents a high structural conservation compared to other importins-α. Dynamic light scattering, analytical size-exclusion chromatography experiments and molecular dynamics simulations indicated that the IMPα-Nc unbound to any ligand may present low stability in solution. The IMPα-Nc theoretical model displayed high similarity of its inner concave surface, which binds the cargo proteins containing the nuclear localization sequences, among IMPα from different species. However, the presence of non-conserved amino acids relatively close to the NLS binding region may influence the binding specificity of IMPα-Nc to cargo proteins. Copyright © 2012 Bentham Science Publishers. All Rights Reserved.
Resumo:
The stimulation by Mg2+, Na+, K+, NH 4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na +, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg-1, K 0.5 = 0.10 ± 0.01 mmol L-1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg-1, K 0.5 = 1.30 ± 0.03 mmol L -1), Mg2+ (V M = 115.0 ± 4.6 U mg -1, K 0.5 = 0.96 ± 0.03 mmol L-1), NH4 + (V M = 141.0 ± 5.6 U mg -1, K 0.5 = 1.90 ± 0.04 mmol L-1), and K+ (V M = 120.0 ± 2.4 U mg-1, K M = 2.74 ± 0.08 mmol L-1) followed single saturation curves and, except for K+, exhibited site-site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L-1. Complementary inhibition studies suggest the presence of F0F1-, Na+-, or K +-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme. © 2013 Springer Science+Business Media New York.