1000 resultados para Sistemas não-linear


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we carried out a study of the 2208 model servo module Datapool, aiming to make the recognition module and the material that accompanies it, and develop the experiences suggested in their study tours, in order to prove and understand its operation. From this study, three experiments were developed, aimed to familiarizing students with the module, calibrate it, and to control servo motor's speed and position, experiences which can become part of the laboratory of Linear Control, making the learning of concepts just richer, because visually, students can escape the theoretical field and see in practice complex concepts being employed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we carried out a study of the 2208 model servo module Datapool, aiming to make the recognition module and the material that accompanies it, and develop the experiences suggested in their study tours, in order to prove and understand its operation. From this study, three experiments were developed, aimed to familiarizing students with the module, calibrate it, and to control servo motor's speed and position, experiences which can become part of the laboratory of Linear Control, making the learning of concepts just richer, because visually, students can escape the theoretical field and see in practice complex concepts being employed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.