792 resultados para Sistemas de energia eletrica
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Actually the energy efficiency is making more space in the industry, due to the search for the sustainability, the electrical energy costs reduction, the goals achievement or the efficiency of production processes. In consumer goods industries, such a beverage industry, as the work is based, the productivity is directly related to the electrical energy consumption. The development of methodologies and/or routines, in addition to some tools which allow to align more efficiently these two aspects (production and consumption of electrical energy), in the viewpoint of the Energy Conservation, is very important. In this case, the study will show the Plant Modulation concepts, a production management methodology, based in some factors related to the productive process, installed equipment, production supplies and energy cost. The proposed methodology was implanted in a plant along 2015 and show the results, in face to confirm its efficiency. Finally, in this study, it was shown the capacity of Plant Modulation to positively impact in the energy efficiency inside a big industry
Resumo:
This work evaluates the existing potential in the state of Sao Paulo for the generation of electrical energy using the sugar cane bagasse as fuel. As the bagasse is a by-product of the sugarcane and alcohol industry and it is produced in large scale in the country, mainly in the state of Sao Paulo, it is important to develop researches that aim the best utilization of this input. In order to determine its potential, at first, a study was conducted considering the utilization of the cogeneration, which is a common practice in the plants of the sector. However, it was concluded that the cogeneration could provide a higher quantity of energy if more modern technologies and more efficient processes were used. Another study to estimate the potential considered a system of gasification of the sugar cane bagasse integrated with the combined cycle (BIG/GTCC). It was concluded that this technology can provide a considerable increase in the electrical supply. In this work it was also developed an energetic study based on real data from a plant located in the state of Sao Paulo. A thermodynamic analysis was done in the existing equipment of the cogeneration section of the plant. And another analysis was done considering the implementation of the BIG/GTCC technology to the cogeneration system. Comparing the results of both settings, it was concluded that the utilization of the sugar cane bagasse integrated to a combined cycle increased considerably the efficiency in the generation of electricity of the plant, increasing more than six times its production capacity of electrical energy
Resumo:
Currently there are two car models that use electricity in their propulsion systems, the electric vehicle and the hybrid electric vehicle. The electric vehicles are classified as vehicles that use electric motors in their propulsion system and batteries as a power source, on the other hand, the hybrid vehicles are classified as vehicles that use both electric motors and internal combustion engines in their propulsion system, using both batteries and líquid fuels as a power source. The main goal of this work is to analyze the characteristics of electric and hybrid electric vehicles and demonstrate the unfeasibility of the electric vehicle in the current economic, political, energetic and environmental brazilian scenario, for this purpose it was realized a study about the current brazilian situation regarding to electricity generation, current conservation status of road network, lack of electrical infrastructure for charging batteries, national lithium reserves, environmental characteristics, tax incentives, economic scenario, oil market and political positioning related to the implantation of electric or hybrid electric fleets in nacional territory. The operational characteristics analysis of electric and hybrid electric vehicles in this current scenario leads to the conclusion that currently a growth of electric vehicles fleets on a national scale is totally impractical in the Brazil, Thus, the introduction of green vehicles probably will occur primarily with hybrid electric models, motivated mainly due the bigger autonomy of this models compared to electric models, lower cost of hybrid electric models compared to electric models, factors related to the lack of recharging infrastructure and also factors related to political positioning
Resumo:
Actually the energy efficiency is making more space in the industry, due to the search for the sustainability, the electrical energy costs reduction, the goals achievement or the efficiency of production processes. In consumer goods industries, such a beverage industry, as the work is based, the productivity is directly related to the electrical energy consumption. The development of methodologies and/or routines, in addition to some tools which allow to align more efficiently these two aspects (production and consumption of electrical energy), in the viewpoint of the Energy Conservation, is very important. In this case, the study will show the Plant Modulation concepts, a production management methodology, based in some factors related to the productive process, installed equipment, production supplies and energy cost. The proposed methodology was implanted in a plant along 2015 and show the results, in face to confirm its efficiency. Finally, in this study, it was shown the capacity of Plant Modulation to positively impact in the energy efficiency inside a big industry
Resumo:
This work evaluates the existing potential in the state of Sao Paulo for the generation of electrical energy using the sugar cane bagasse as fuel. As the bagasse is a by-product of the sugarcane and alcohol industry and it is produced in large scale in the country, mainly in the state of Sao Paulo, it is important to develop researches that aim the best utilization of this input. In order to determine its potential, at first, a study was conducted considering the utilization of the cogeneration, which is a common practice in the plants of the sector. However, it was concluded that the cogeneration could provide a higher quantity of energy if more modern technologies and more efficient processes were used. Another study to estimate the potential considered a system of gasification of the sugar cane bagasse integrated with the combined cycle (BIG/GTCC). It was concluded that this technology can provide a considerable increase in the electrical supply. In this work it was also developed an energetic study based on real data from a plant located in the state of Sao Paulo. A thermodynamic analysis was done in the existing equipment of the cogeneration section of the plant. And another analysis was done considering the implementation of the BIG/GTCC technology to the cogeneration system. Comparing the results of both settings, it was concluded that the utilization of the sugar cane bagasse integrated to a combined cycle increased considerably the efficiency in the generation of electricity of the plant, increasing more than six times its production capacity of electrical energy
Resumo:
Currently there are two car models that use electricity in their propulsion systems, the electric vehicle and the hybrid electric vehicle. The electric vehicles are classified as vehicles that use electric motors in their propulsion system and batteries as a power source, on the other hand, the hybrid vehicles are classified as vehicles that use both electric motors and internal combustion engines in their propulsion system, using both batteries and líquid fuels as a power source. The main goal of this work is to analyze the characteristics of electric and hybrid electric vehicles and demonstrate the unfeasibility of the electric vehicle in the current economic, political, energetic and environmental brazilian scenario, for this purpose it was realized a study about the current brazilian situation regarding to electricity generation, current conservation status of road network, lack of electrical infrastructure for charging batteries, national lithium reserves, environmental characteristics, tax incentives, economic scenario, oil market and political positioning related to the implantation of electric or hybrid electric fleets in nacional territory. The operational characteristics analysis of electric and hybrid electric vehicles in this current scenario leads to the conclusion that currently a growth of electric vehicles fleets on a national scale is totally impractical in the Brazil, Thus, the introduction of green vehicles probably will occur primarily with hybrid electric models, motivated mainly due the bigger autonomy of this models compared to electric models, lower cost of hybrid electric models compared to electric models, factors related to the lack of recharging infrastructure and also factors related to political positioning
Resumo:
The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.
Resumo:
The focus of this work is the automatic analysis of disturbance records for electrical power generating units. The main proposition is a method based on wavelet transform applied to short-term disturbance records (waveform records). The goal of the method is to detect the time instants of recorded disturbances and extract meaningful information that characterize the faults. The result is a set of representative information of the monitored signals in power generators. This information can be further classified by an expert system (or other classification method) in order to classify the faults and other abnormal operating conditions. The large amount of data produced by digital fault recorders during faults justify the research of methods to assist the analysts in their task of analysing the disturbances. The literature review pointed out the state of the art and possible applications for oscillography records. The review of the COMTRADE standard and wavelet transform underlines the choice of the method for solving the problem. The conducted tests lead to the determination of the best mother wavelet for the segmentation process. The application of the proposed method to five case studies with real oscillographic records confirmed the accuracy and efficiency of the proposed scheme. With this research, the post-operation analysis of occurrences is improved and as a direct result is the reduction of the time that generators are offline.
Resumo:
The insertion of distributed generation units in the electric power systems have contributed to the popularization of microgrid concepts. With the microgrids, several potential benefits can be achieved in regard to power quality and supply reliability. However, several technical challenges related to the control and operation of microgrids, which are associated with high insertion of generation systems based on static converters, must be overcame. Among the opportunities in the context of microgrids, there is the islanded operation of microgrids temporarily disconnected from the electric power systems and also the autonomous operation of geographically isolated microgrids. The frequency in large power systems is traditionally controlled by the generation units based on traditional synchronous generator. The insertion of distributed generation units based on static power converters may bring difficulties to the frequency control in microgrids, due to the reduction of the equivalent inertia of conventional synchronous generators present in islanded and isolated microgrids. In this context, it becomes necessary the proposition of new operational and control strategies for microgrids control, taking into account the presence of distributed generation units based on full-rated converter. This paper proposes an operational and control strategy for the islanded operation of a winddiesel microgrid with high insertion level of wind generation. The microgrid adopted in this study comprises of a wind energy conversion system with synchronous generator based on full rated converter, a diesel generator (DIG) and a dump load. Due to the high insertion level of wind generation, the wind unit operates in Vf mode and the diesel generator operates in PQ mode. The diesel generator and the dump load are used to regulate the DC-link voltage of the wind generation unit. The proposed control allows the islanded operation of the microgrid only with wind generation, wind-only mode (WO), and with wind-diesel generation, wind-diesel mode (WD). For the wind-only mode, with 100% of penetration level of wind generation, it is proposed a DC-link voltage control loop based on the use of a DC dump load. For the winddiesel mode, it is proposed a DC-link voltage control loop added to the diesel generator, which is connected to the AC side of the microgrid, in coordinated action with the dump load. The proposed operational and control strategy does not require the use of batteries and aims to maximize the energy production from wind generation, ensuring the uninterrupted operation of the microgrid. The results have showed that the operational and control strategy allowed the stable operation of the islanded microgrid and that the DC-link voltage control loop added to the diesel generator and the dump load proved to be effective during the typical variations of wind speed and load.
Resumo:
Dissertação de Mestrado, Engenharia Elétrica e Eletrónica, Especialização em Sistemas de Energia e Controlo, Instituto Superior de Engenharia, Universidade do Algarve, 2016
Resumo:
Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.
Resumo:
Dissertação de mest., Engenharia Eléctrica e Electrónica (Sistemas de Energia e Controlo), Univ. do Algarve, 2010
Resumo:
Se considerarmos todos os edifícios do mundo, estes são responsáveis por uns surpreendentes 40% do consumo global de energia e pela resultante pegada ecológica, ultrapassando significativamente os resultados de todos os meios de transporte em conjunto. Existem grandes e atractivas oportunidades de redução da utilização de energia nos edifícios com menores custos e maiores retornos que noutros sectores. Estas reduções são fundamentais para alcançar o objectivo da Agência Internacional de Energia (AIE), de reduzir em cerca de 70% das emissões de gases com efeito de estufa, de todo o planeta em 2050, isto para atingir os níveis de CO2 estabelecidos e exigidos pelo Painel Intergovernamental sobre as Alterações Climáticas (IPCC, na sigla inglesa). No caso dos edifícios de habitação, a produção de água quente (AQS), é o segundo maior factor de consumo de energia: cerca de 30% do consumo energético total. Para ajudar a minimizar todos estes grandes consumos de energia, existem soluções, nomeadamente para o aquecimento da AQS, que podemos aplicar nos edifícios de habitação colectiva (multifamiliares) ou moradias, utilizando fontes de energia renovável. E neste caso estamos a falar da energia solar térmica. Das várias soluções propostas e utilizadas diariamente, principalmente nos edifícios de habitação colectiva, existirá aquela que, do ponto de vista técnico-económico, numa perspectiva de eficiência energética/custo-benefício, se antevê como a melhor solução, uma vez que é frequente que não se tenha conhecimento de causa sobre cada uma delas. A presente tese baseia-se na análise de várias soluções de sistemas de energia solar térmica para o aquecimento de AQS em edifícios de habitação colectiva, com o objectivo de analisar e comparar as várias soluções. Espera-se contribuir para a clarificação dos vários sistemas utilizados e propostos actualmente no mercado
Resumo:
Dissertação de Mesterado, Engenharia Elétrica e Eletrònica, Instituto Superior de Engenharia, Universidade do Algarve, 2015