877 resultados para Simulated robots
Resumo:
In a previous paper, we discovered a surprising spectrally-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM) program. The relationship suggests that the shortwave spectrum near cloud edges can be determined by a linear combination of zenith radiance spectra of the cloudy and clear regions. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV) of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud phase function, thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorbing and scattering properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectrally-invariant relationship can be used to infer cloud properties near cloud edges even with insufficient or no knowledge about spectral surface albedo and aerosol properties.
Resumo:
Cybernetics is a broad subject, encompassing many aspects of electrical, electronic, and computer engineering, which suffers from a lack of understanding on the part of potential applicants and teachers when recruiting students. However, once the engineering values, fascinating science, and pathways to rewarding, diverse careers are communicated, appropriate students can be very interested in enrolling. At the University of Reading, Reading, U.K., a key route for outreach to prospective students has been achieved through the use of robots in interactive talks at schools, competitions (often funded by Public Understanding of Science projects), a collectable fortnightly magazine, exhibitions in museums, open days at the University, and appearances in the media. This paper identifies the interactive engagement, anthropomorphic acceptability, and inspirational nature of robots as being key to their successful use in outreach activities. The statistical results presented show that the continued popularity of degrees at Reading in cybernetics, electronic engineering, and robotics over the last 20 years is in part due to the outreach activities to schools and the general public.
Resumo:
Water table draw-down is thought to increase peat decomposition and, therefore, DOC release. However, several studies have shown lower DOC concentrations during droughts relative to ‘normal’ periods with high water table. We carried out controlled incubation experiments at 10°C on 10x10 cm peat soil cores collected from six UK sites across a sulphur deposition gradient. Our aim was to quantify the balance between microbial consumption and chemical precipitation of DOC due to episodic acidification driven by sulphur redox reactions by comparing changes in soil water chemistry to microbial activity (i.e. soil respiration and trace gas fluxes). During dry periods, all sites showed a concurrent increase in SO4 and soil respiration and a decline in DOC. However, the magnitude of change in both DOC and SO4 varied considerably between sites according to historical sulphur deposition loads and the variation in acid/base chemistry.
Resumo:
In this paper a look is taken at the relatively new area of culturing neural tissue and embodying it in a mobile robot platform—essentially giving a robot a biological brain. Present technology and practice is discussed. New trends and the potential effects of and in this area are also indicated. This has a potential major impact with regard to society and ethical issues and hence some initial observations are made. Some initial issues are also considered with regard to the potential consciousness of such a brain.
Resumo:
The effect of variation of the water model on the temperature dependence of protein and hydration water dynamics is examined by performing molecular dynamics simulations of myoglobin with the TIP3P, TIP4P, and TIP5P water models and the CHARMM protein force field at temperatures between 20 and 300 K. The atomic mean-square displacements, solvent reorientational relaxation times, pair angular correlations between surface water molecules, and time-averaged structures of the protein are all found to be similar, and the protein dynamical transition is described almost indistinguishably for the three water potentials. The results provide evidence that for some purposes changing the water model in protein simulations without a loss of accuracy may be possible.
Resumo:
This paper describes experiments relating to the perception of the roughness of simulated surfaces via the haptic and visual senses. Subjects used a magnitude estimation technique to judge the roughness of “virtual gratings” presented via a PHANToM haptic interface device, and a standard visual display unit. It was shown that under haptic perception, subjects tended to perceive roughness as decreasing with increased grating period, though this relationship was not always statistically significant. Under visual exploration, the exact relationship between spatial period and perceived roughness was less well defined, though linear regressions provided a reliable approximation to individual subjects’ estimates.
Resumo:
This paper outlines some rehabilitation applications of manipulators and identifies that new approaches demand that the robot make an intimate contact with the user. Design of new generations of manipulators with programmable compliance along with higher level controllers that can set the compliance appropriately for the task, are both feasible propositions. We must thus gain a greater insight into the way in which a person interacts with a machine, particularly given that the interaction may be non-passive. We are primarily interested in the change in wrist and arm dynamics as the person co-contracts his/her muscles. It is observed that this leads to a change in stiffness that can push an actuated interface into a limit cycle. We use both experimental results gathered from a PHANToM haptic interface and a mathematical model to observe this effect. Results are relevant to the fields of rehabilitation and therapy robots, haptic interfaces, and telerobotics
Resumo:
As healthcare costs rise and an aging population makes an increased demand on services, so new techniques must be introduced to promote an individuals independence and provide these services. Robots can now be designed so they can alter their dynamic properties changing from stiff to flaccid, or from giving no resistance to movement, to damping any large and sudden movements. This has some strong implications in health care in particular for rehabilitation where a robot must work in conjunction with an individual, and might guiding or assist a persons arm movements, or might be commanded to perform some set of autonomous actions. This paper presents the state-of-the-art of rehabilitation robots with examples from prosthetics, aids for daily living and physiotherapy. In all these situations there is the potential for the interaction to be non-passive with a resulting potential for the human/machine/environment combination to become unstable. To understand this instability we must develop better models of the human motor system and fit these models with realistic parameters. This paper concludes with a discussion of this problem and overviews some human models that can be used to facilitate the design of the human/machine interfaces.