982 resultados para Silicon carbide (SiC)
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To review of the current status of enamel microabrasion method and its results 18 years after the development and application of this method. Methods: A technique performing enamel microabrasion with hydrochloric acid mixed with pumice and other techniques employing a commercially available compound of hydrochloric acid and fine-grit silicon carbide particles in a water-soluble paste have been described. Much has been learned about the application of this esthetic technique, long-term treatment results and microscopic changes to the enamel surface that has significant clinical implications. The latest treatment protocol is presented and photographic case histories document the treatment results. Clinical observations made over 18 years are discussed. Results: According to our findings, the dental enamel microabrasion technique is a highly satisfactory, safe and effective procedure.
Resumo:
Objective: To assess the effect of metal conditioners on the bond strength between resin cements and cast titanium. Method and Materials: Commercially pure titanium (99.56%) was cast using an arc casting machine. Surfaces were finished with 400-grit silicon carbide paper followed by air abrasion with 50-mu m aluminum oxide. A piece of double-coated tape with a 4-mm circular hole was then positioned on the metal surface to control the area of the bond. The prepared surfaces were then divided into 4 groups (n=10): G1, unprimed Panavia F; G2, Alloy Primer-Panavia F; G3, unprimed Bistite DC; G4, Metaltite-Bistite DC. Forty minutes after insertion of the resin cements, the specimens were detached from the mold and stored in water at 37 C for 24 hours. Shear bond strength was performed in a testing machine (MTS 810) at a crosshead speed of 0.5 mm/min. Data were analyzed using ANOVA and Tukey's test with a .05 significance level. The fractured surfaces were observed through an optical microscope at 10x magnification. Results: the G1 group demonstrated significantly higher shear bond strength (17.95 MPa) than the other groups. G3 (13.79 MPa) and G4 (12.98 MPa) showed similar mean values to each other and were statistically superior to G2 (9.31 MPa). Debonded surfaces generally presented adhesive failure between metal surfaces and resin cements. Conclusion: While the Metaltite conditioner did not influence the bond strength of the Bistite DC cement, the Alloy Primer conditioner significantly decreased the mean bond strength of the Panavia F cement.
Resumo:
This investigation studied the effects of disinfectant solutions on the hardness of acrylic resin denture teeth. The occlusal surfaces of 64 resin denture teeth were ground flat with abrasives up to 400-grit silicon carbide paper. Measurements were made after polishing and after the specimens were stored in water at 37 degreesC for 48 h. The specimens were then divided into four groups and immersed in chemical disinfectants (4% chlorhexidine; 1% sodium hypochlorite and sodium perborate) for 10 min. The disinfection methods were performed twice to simulate clinical conditions and hardness measurements were made. Specimens tested as controls were immersed in water during the same disinfection time. Eight specimens were produced for each group. After desinfection procedures, testing of hardness was also performed after the samples were stored at 37 degreesC for 7, 30, 60, 90 and 120 days. Data were analysed using two-way analysis of variance (anova) and Tukey's test at 95% confidence level. According to the results, no significant differences were found between materials and immersion solutions (P > 0.05). However, a continuous decrease in hardness was noticed after ageing (P < 0.05). It was conclude that the surfaces of both acrylic resin denture teeth softened upon immersion in water regardless the disinfecting solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The purpose of this study was to evaluate the flexural strength of repairs made with autopolymerising acrylic resin after different treatments of joint surfaces.Material and Methods: Fifty rectangular specimens were made with heat-polymerised acrylic resin and 40 were repaired with autopolymerising acrylic resin following joint surface treatments: group 1 (intact specimens), group 2 (chemical treatment: wetting with methyl-methacrylate for 180 s), group 3 (abraded with silicon carbide paper), group 4 (abraded and wetting with methyl-methacrylate for 180 s) and group 5 (without surface treatment). The flexural strength was measured by a three-point bending test using a universal testing machine with a 100 Kgf load cell in the centre of repair at 5 mm/min cross-head speed. All data were analysed using one-way ANOVA and Tukey HSD test for multiple comparisons (p < 0.05).Results: Among repaired specimens, groups 2 and 4 had 66.53 +/- 3.4 and 69.38 +/- 1.8 MPa mean values and were similar. These groups had superior flexural strength than groups 3 and 5 that were similar and had 54.11 +/- 3.4 and 51.24 +/- 2.8 MPa mean values, respectively. Group 1 had a mean value of 108.30 +/- 2.8 MPa being the highest result.Conclusion: It can be concluded that the treatment of the joint surfaces with methyl-methacrylate increases the flexural strength of denture base repairs, although the strength is still lower than that observed for the intact denture base resin. Abrasion with sandpaper was not able to influence the flexural strength of repaired denture bases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Statement of problem. Acrylic resin denture teeth soften upon immersion in water, and the heating generated during microwave sterilization may enhance this process.Purpose. Six brands of acrylic resin denture teeth were investigated with respect to the effect of microwave sterilization and water immersion on Vickers hardness (VHN).Material and Methods. The acrylic resin denture teeth (Dentron [D], Vipi Dent Plus [V], Postaris [P], Biolux [B], Trilux [T], and Artiplus [A]) were embedded in heat-polymerized acrylic resin within polyvinylchloride tubes. For each brand, the occlusal surfaces of 32 identical acrylic resin denture posterior teeth were ground flat with 1500-grit silicon carbide paper and polished on a wet polishing wheel with a slurry of tin oxide. Hardness tests were performed after polishing (control group, C) after polishing followed by 2 cycles of microwave sterilization at 650 W for 6 minutes (MwS group), after polishing followed by 90-day immersion in water (90-day Wim group), and after polishing followed by 90-day storage in water and 2 cycles of microwave sterilization (90-day Wim + MwS group). For each specimen, 8 hardness measurements were made and the mean was calculated. Data were analyzed with a 2-way analysis of variance followed by the Bonferroni procedure to determine any significance between pairs of mean values (alpha=.01).Results: Mircrowave sterilization of specimens significantly decreased (P <.001) the hardness of the acrylic resin denture tooth specimens P (17.8 to 16.6 VHN, V (18.3 to 15.8 VHN), T (17.4 to 15.3 VHN), B (16.8 to 15.7 VHN), and A (17.3 to 15.7 VHN). For all acrylic resin denture teeth, no significant differences in hardness were found between the groups Mws, 90-day Wim, and 90-day Wim + MwS, with the exception of the 90-day Wim + MwS tooth A specimens (14.4 VHN), which demonstrated significant lower mean values (P <.001) than the 90-day Wim (15.8 VHN) and MwS (15.7 VHN) specimens.Conclusions. For specimens immersed in water for 90 days, 2 cycles of microwave sterilization had no effect on the hardness of most of the acrylic resin denture teeth.
Resumo:
Background: Several studies have shown a reduction in enamel bond strengths when the bonding procedure is carried out immediately after vital bleaching with peroxides. This reduction in bond strengths has become a concern in cosmetic dentistry with the introduction of new in-office and waiting-room bleaching techniques. The aim of this in vitro study was to evaluate the effect of three bleaching regimens: 35% hydrogen peroxide (HP), 35% carbamide peroxide (CP), and 10% CP, on dentin bond strengths. Materials and Methods: One hundred and twenty fresh bovine incisors were used in this study. The labial surface of each tooth was ground flat to expose dentin and was subsequently polished with 600-grit wet silicon carbide paper. The remaining dentin thickness was monitored and kept at an average of 2 mm. The teeth were randomly assigned to four bleaching regimens (n = 30): (A) control, no bleaching treatment; (B) 35% HP for 30 minutes; (C) 35% CP for 30 minutes; and (D) 10% CP for 6 hours. For each group, half of the specimens (n = 15) were bonded with Single Bond/Z100 immediately after the bleaching treatment, whereas the other half was bonded after the specimens were stored for 1 week in artificial saliva at 37°C. The specimens were fractured in shear using an Instron machine. Results: For the groups bonded immediately after bleaching, one-way analysis of variance (ANOVA) followed by the Duncan's post hoc test revealed a statistically significant reduction in bond strengths in a range from 71% to 76%. For the groups bonded at 1 week, one-way ANOVA showed that group B (35% HP for 30 min) resulted in the highest bond strengths, whereas 10% CP resulted in the lowest bond strengths. Student's t-test showed that delayed bonding resulted in a significant increase in bond strengths for groups B (35% HP) and C (35% CP); whereas the group bleached with 10% CP (group D) remained in the same range obtained for immediate bonding. Storage in artificial saliva also affected the control group, reducing its bond strengths to 53% of the original. ©2000 BC Decker Inc.
Resumo:
Purpose: This investigation studied the effects of 3 surface treatments on the shear bond strength of a light-activated composite resin bonded to acrylic resin denture teeth. Materials and Methods: The occlusal surfaces of 30 acrylic resin denture teeth were ground flat with up to 400-grit silicon carbide paper. Three different surface treatments were evaluated: (1) the flat ground surfaces were primed with methyl methacrylate (MMA) monomer for 180 seconds; (2) light-cured adhesive resin was applied and light polymerized according to the manufacturer's instructions; and (3) treatment 1 followed by treatment 2. The composite resin was packed on the prepared surfaces using a split mold. The interface between tooth and composite was loaded at a cross-head speed of 0.5 mm/min until failure. Results: Analysis of variance indicated significant differences between the surface treatments. Results of mean comparisons using Tukey's test showed that significantly higher shear bond strengths were developed by bonding composite resin to the surfaces that were previously treated with MMA and then with the bonding agent when compared to the other treatments. Conclusion: Combined surface treatment of MMA monomer followed by application of light-cured adhesive resin provided the highest shear bond strength between composite resin and acrylic resin denture teeth.
Resumo:
The objective of this study was to evaluate, through scanning electronic microscopy, the effect of sharpening with different sharpening stones on the cutting angle of periodontal curettes (Gracey 5-6), and the influence on root surfaces after debridement and planing. The experimental model consisted of two different phases. In the first, the cutting angles of fifteen stainless steel Gracey 5-6 curettes were analyzed under a scanning electronic microscope after being sharpened with different types of stones. In the second phase, the root surfaces of 25 newly extracted teeth were evaluated with a scanning electronic microscope after being debrided with curettes sharpened with different stones. Analysis of the results showed that the synthetic stones (aluminum oxide and carborundum) are more abrasive and produce more irregular cutting angles, whereas Arkansas stones are less abrasive and produce smoother and more defined cutting angles. There was no significant statistical differences among the five groups tested with regard to the degree of irregularity of the root surfaces after instrumentation.
Tensile bond strength: Evaluation of four current adhesive systems in abraded enamel and deep dentin
Resumo:
This study aimed to evaluate the tensile bond strength of adhesive systems in abraded enamel and deep dentin of the occlusal surface of forty human molar teeth. Enamel surfaces as well as the rest of the teeth were coated with epoxy resin and regularized and polished with silicon carbide sandpapers. The 40 teeth were randomized into eight groups of five teeth per group. Four groups were assigned to have deep dentin as the dental substrate and the other four had abraded enamel as the substrate for the adhesives to be tested. The adhesives being tested were the total etching Single Bond: SB, the self-etching Clearfil SE bond: CSEB, self-etching One Up Bond F: OUBF and the self-etching Self-Etch Bond: SEB adhesives. The samples (teeth) were restored with composite resin and subjected to a traction assay. The results were statistically analyzed using the ANOVA and TUKEY tests. The total etching SB adhesive system had the greatest bonding strength of all the adhesives tested, on both dental substrates (20.1 MegaPascals (MPa) on abraded enamel and 19.4 MPa on deep dentin). Of the self-etching dental adhesives tested, CSEB had the greatest bonding strength on both substrates (14.6 MPa on abraded enamel and 15.4 MPa on deep dentin). Both OUBF (11.0 MPa for enamel, 13.1 MPa for dentin) and SEB (10.2 MPa for enamel, 12.6 MPa for dentin) showed comparable bonding strengths without any significant differences for either substrate Thus, the total etching SB adhesive system had better bonding strength than the other self-etching adhesives used, regardless of the dental substrate to which the adhesives had been bonded.
Resumo:
This paper discusses the investigation of an abrasive process for finishing flat workpieces, based on the combination of important grinding and lapping characteristics. Instead of loose abrasive grains between the workpiece and the lapping plate, a resinoid grinding wheel of hot-pressed silicon carbide is placed on the plate of a device resembling a lapping machine. The resin bond grinding wheel is dressed with a single-point diamond. In addition to keeping the plate flat, dressing also plays the role of interfering in the behavior of the process by varying the overlap factor (Ud). It was found that the studied process simplify the set-up and can be controlled more easily than in lapping, whose is a painstaking process. The surface roughness and flatness deviation proved comparable to those of lapping, or even finer than it, with the additional advantage of a less contaminated workpiece surface with a shiny appearance. The process was also monitored by acoustic emission (AE), which indicates to be a promissing and suitable technique for use in this process. Copyright © 2008 by ASME.
Resumo:
This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.