405 resultados para Silicates
Resumo:
Caulim é um produto originado pela ação do intemperismo de silicatos de alumínio como os feldspatos, que na região amazônica é favorecida pelo clima quente e úmido. Usado na fabricação de materiais refratários, cimentos, fármacos, catalisadores, cobertura e enchimentos de papel e outras diversas finalidades. Este trabalho tem como objetivo a caracterização e a comparação de caulins de coberturas e in natura de diferentes regiões do Pará (Rio Capim, Jarí e Vila do Conde) de origens sedimentares com caulins utilizados como materiais de referência (IPT-28, IPT-32, IPT-42, KGa-1b e KGa-2). Nas caracterizações foram utilizados métodos de análise química, física e mineralógica como: Análise de tamanho de partícula, Difração de raios X, Fluorescência de raios X, Microscopia Eletrônica de Varredura, Análise Térmica Diferencial. Os resultados mostraram como principal fase mineral em todos os caulins estudados a caulinita, com diferentes graus de "cristalinidade". Os caulins amazônicos apresentaram-se com alto e baixo grau de ordem estrutural, assim como os materiais de referências. No que se referem às propriedades de composição química, ambos os materiais apresentaram teores de SiO2 + Al2O3 acima de 90%, teores de Na2O e TiO2 muito baixos, em média 0,6% e 1,92%, respectivamente para os materiais de referência, e para os amazônicos foram de Na2O 0,3% e 1,62% para TiO2. Quanto à análise de tamanho de partícula, observaram-se variações de D50 = 0,7 a 9 µm para os da Amazônia e D50 = 1,7 a 6 µm para os de referência. Os caulins amazônicos sedimentares por mostrarem baixos teores de impurezas e por serem encontrados em grandes quantidades, sugerem um forte potencial para utilização como caulins de referência.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sol-gel process and the wide variety of alkoxides commercially available have facilitated the processing of various Organic-Inorganic Hybrid Materials. In general, the hybrids are excellents matrix to incorporate organic or inorganic dopants that presents photochromic, thermochromic, and halochromic effects and in some cases photorefractive effects. The GPTS-TEOS hybrid matrix when deposited in the form of film is very resistant, adherent, has excellent transparency in visible region and allows to be doped with various azo-dye and metal salts of unusual oxidation states. One of the main characteristics of the azo-dyes when immersed in some hybrid matrix , is the capacity to isomerizes through group Azo (-N = N-) would can be commutated between the Cis (Z) and Trans (E) configurations by means of light or heat. Our goal was through the sol-gel process to prepare hybrid films of GPTS-TEOS doped with azo-dyes Methyl Red and Disperse Red 1, and characterize them optically. The characterizations are performed using techniques of UV / Vis spectroscopy, to identify changes in the absorption band of azo-dyes in the presence of optical pumping, (photochromic effects), in function of temperature (thermochromic effect). These properties are of wide scientific and technological interest because they will contribute to the confection Smart Windows (windows sensible to light), temperature sensors monitored optically and also in the recording of amplitude and phase diffraction gratings
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg 2+, Pb 2+, Cd 2+, Cu 2+, and Zn 2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from -0.2 to 0.8 V (0.05 M KNO 3 vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 μg L -1. The precision of determination was satisfactory for the respective concentration level. 2005 © The Japan Society for Analytical Chemistry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.
Resumo:
Compartmentalization is a prerequisite to understand large wetlands that receive water from several sources. However, it faces the heterogeneity in space and time, resulting from physical, chemical and biological processes that are specific to wetlands. The Pantanal is a vast seasonally flooded continental wetland located in the centre of South America. The chemical composition of the waters that supply the Pantanal (70 rivers) has been studied in order to establish a compartmentalization of the wetland based on soil-water interactions. A PCA-based EMMA (End-Members Mixing Analysis) procedure shows that the chemistry of the rivers can be viewed as a mixture of 3 end-members, influenced by lithology and land use, and delimiting large regions. Although the chemical composition of the end-members changed between dry and wet seasons, their spatial distribution was maintained. The results were extended to the floodplain by simple tributary mixing calculation according to the hydrographical network and to the areas of influence for each river when in overflow conditions. The resulting map highlights areas of high geochemical contrast on either side of the river Cuiaba in the north, and of the rivers Aquidauana and Abobral in the south. The PCA-based treatment on a sampling conducted in the Nhecolandia, a large sub region of the Pantanal, allowed the identification and ordering of the processes that control the geochemical variability of the surface waters. Despite an enormous variability in electrical conductivity and pH, all data collected were in agreement with an evaporation process of the Taquari River water, which supplies the region. Evaporation and associated saline precipitations (Mg-calcite, Mg-silicates K-silicates) explained more than 77% of the total variability in the chemistry of the regional surface water sampling.