979 resultados para Signal-noise relation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dizziness and or unsteadiness, associated with episodes of loss of balance, are frequent complaints in those suffering from persistent problems following a whiplash injury. Research has been inconclusive with respect to possible aetiology, discriminative tests and analyses used. The aim of this pilot research was to identify the test conditions and the most appropriate method for the analysis of sway that may differentiate subjects with persistent whiplash associated disorders (WAD) from healthy controls. The six conditions of the Clinical Test for Sensory Interaction in Balance was performed in both comfortable and tandem stance in 20 subjects with persistent WAD compared to 20 control subjects. The analyses were carried out using a traditional method of measurement, total sway distance, to results obtained from the use of wavelet analysis. Subjects with WAD were significantly less able to complete the tandem stance tests on a firm surface than controls. In comfortable stance, using wavelet analysis, significant differences between subjects with WAD and the control group were evident in total energy of the trace for all test conditions apart from eyes open on the firm surface. In contrast, the results of the analysis using total sway distance revealed no significant differences between groups across all six conditions. Wavelet analysis may be more appropriate for detecting disturbances in balance in whiplash subjects because the technique allows separation of the noise from the underlying systematic effect of sway. These findings will be used to direct future studies on the aeitiology of balance disturbances in WAD. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the maximum ratio combining method for the combining of antenna-diversity signals in correlated Rician-fading channels is rigorously studied. The distribution function of the normalized signal-to-noise ratio (SNR) is expanded in terms of a power series and calculated numerically. This power series can easily take into account the signal correlations and antenna gains and can be applied to any number of receiving antennas. An application of the method to dual-antenna diversity systems produces useful distribution curves for the normalized SNR which can be used to find the diversity gain. It is revealed that signal correlation in Rician-fading channels helps to increase the diversity gain rather than to decrease it as in the Rayleigh fading channels. It is also shown that with a relative strong direct signal component, the diversity gain can be much higher than that without a direct signal component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provided a thorough test of the acoustic adaptation hypothesis using a within-species comparison of call structure involving a wide range of habitat types, an objective measure of habitat density and direct measures of habitat-related attenuation. The structure of the bower advertisement call of the satin bowerbird was measured in 16 populations from throughout the species' range and related to the habitat type and density at each site. Transmission of white noise, pure tones and different bowerbird dialects was measured in five of six habitat types inhabited by satin bowerbirds. Bowerbird advertisement call structure converged in similar habitats but diverged among different habitats; this pattern was apparent at both continent-wide and local geographical scales. Bowerbirds' call structures differed with changes in habitat density, consistent with the acoustic adaptation hypothesis. Lower frequencies and less frequency modulation were utilized in denser habitats such as rainforest and higher frequencies and more frequency modulation were used in the more open eucalypt-dominated habitats. The white noise and pure tone transmission measurements indicated that different habitats varied in their sound transmission properties in a manner consistent with the observed variation in satin bowerbird vocalizations. There was no effect of geographical proximity of recording locations, nor was there the predicted inverse relationship between frequency and body size. These findings indicate that the transmission qualities of different habitats have had a major influence on variation in vocal phenotypes in this species. In addition, previously published molecular data for this species suggest that there is no effect of genetic relatedness on call similarity among satin bowerbird populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colour changes in fiddler crabs have long been noted, but a functional interpretation is still lacking. Here we report that neighbouring populations of Uca vomeris in Australia exhibit different degrees of carapace colours, which range from dull mottled to brilliant blue and white. We determined the spectral characteristics of the mud substratum and of the carapace colours of U. vomeris and found that the mottled colours of crabs are cryptic against this background, while display colours provide strong colour contrast for both birds and crabs, but luminance contrast only for a crab visual system. We tested whether crab populations may become cryptic under the influence of bird predation by counting birds overflying or feeding on differently coloured colonies. Colonies with cryptically coloured crabs indeed experience a much higher level of bird presence, compared to colourful colonies. We show in addition that colourful crab individuals subjected to dummy bird predation do change their body colouration over a matter of days. The crabs thus appear to modify their social signalling system depending on their assessment of predation risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator , rather than on the weight enumerator employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the visual mechanisms that serve to encode spatial contrast at threshold and supra-threshold levels. In a 2AFC contrast-discrimination task, observers had to detect the presence of a vertical 1 cycle deg-1 test grating (of contrast dc) that was superimposed on a similar vertical 1 cycle deg-1 pedestal grating, whereas in pattern masking the test grating was accompanied by a very different masking grating (horizontal 1 cycle deg-1, or oblique 3 cycles deg-1). When expressed as threshold contrast (dc at 75% correct) versus mask contrast (c) our results confirm previous ones in showing a characteristic 'dipper function' for contrast discrimination but a smoothly increasing threshold for pattern masking. However, fresh insight is gained by analysing and modelling performance (p; percent correct) as a joint function of (c, dc) - the performance surface. In contrast discrimination, psychometric functions (p versus logdc) are markedly less steep when c is above threshold, but in pattern masking this reduction of slope did not occur. We explored a standard gain-control model with six free parameters. Three parameters control the contrast response of the detection mechanism and one parameter weights the mask contrast in the cross-channel suppression effect. We assume that signal-detection performance (d') is limited by additive noise of constant variance. Noise level and lapse rate are also fitted parameters of the model. We show that this model accounts very accurately for the whole performance surface in both types of masking, and thus explains the threshold functions and the pattern of variation in psychometric slopes. The cross-channel weight is about 0.20. The model shows that the mechanism response to contrast increment (dc) is linearised by the presence of pedestal contrasts but remains nonlinear in pattern masking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead ofbeing another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. There are many kinds of protocols that work over WMNs, such as IEEE 802.11a/b/g, 802.15 and 802.16. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. While transmission rate is a significant part, only a few algorithms such as Auto Rate Fallback (ARF) or Receiver Based Auto Rate (RBAR) have been published. In this paper we will show MAC, packet loss and physical layer conditions play important role for having good channel condition. Also we perform rate adaption along with multiple packet transmission for better throughput. By allowing for dynamically monitored, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria improvements in performance can be obtained. The proposed method is the detection of channel congestion by measuring the fluctuation of signal to the standard deviation of and the detection of packet loss before channel performance diminishes. We will show that the use of such techniques in WMN can significantly improve performance. The effectiveness of the proposed method is presented in an experimental wireless network testbed via packet-level simulation. Our simulation results show that regardless of the channel condition we were to improve the performance in the throughput.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrastdiscrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3 c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224--1243.] was `lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of structured noise suppression is addressed by i)modelling the subspaces hosting the components of the signal conveying the information and ii)applying a nonlin- ear non-extensive technique for effecting the right separation. Although the approach is applicable to all situations satisfying the hypothesis of the proposed framework, this work is motivated by a particular scenario, namely, the cancellation of low frequency noise in broadband seismic signals.