903 resultados para Signal Authentication
Resumo:
In this paper, we have proposed a centralized multicast authentication protocol (MAP) for dynamic multicast groups in wireless networks. In our protocol, a multicast group is defined only at the time of the multicasting. The authentication server (AS) in the network generates a session key and authenticates it to each of the members of a multicast group using the computationally inexpensive least common multiple (LCM) method. In addition, a pseudo random function (PRF) is used to bind the secret keys of the network members with their identities. By doing this, the AS is relieved from storing per member secrets in its memory, making the scheme completely storage scalable. The protocol minimizes the load on the network members by shifting the computational tasks towards the AS node as far as possible. The protocol possesses a membership revocation mechanism and is protected against replay attack and brute force attack. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
The analytic signal (AS) was proposed by Gabor as a complex signal corresponding to a given real signal. The AS has a one-sided spectrum and gives rise to meaningful spectral averages. The Hilbert transform (HT) is a key component in Gabor's AS construction. We generalize the construction methodology by employing the fractional Hilbert transform (FrHT), without going through the standard fractional Fourier transform (FrFT) route. We discuss some properties of the fractional Hilbert operator and show how decomposition of the operator in terms of the identity and the standard Hilbert operators enables the construction of a family of analytic signals. We show that these analytic signals also satisfy Bedrosian-type properties and that their time-frequency localization properties are unaltered. We also propose a generalized-phase AS (GPAS) using a generalized-phase Hilbert transform (GPHT). We show that the GPHT shares many properties of the FrHT, in particular, selective highlighting of singularities, and a connection with Lie groups. We also investigate the duality between analyticity and causality concepts to arrive at a representation of causal signals in terms of the FrHT and GPHT. On the application front, we develop a secure multi-key single-sideband (SSB) modulation scheme and analyze its performance in noise and sensitivity to security key perturbations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a novel authentication protocol for MANETs requiring stronger security. The protocol works on a two-tier network architecture with client nodes and authentication server nodes, and supports dynamic membership. We use an external membership granting server (MGS) to provide stronger security with dynamic membership. However, the external MGS in our protocol is semi-online instead of being online, i.e., the MGS cannot initiate a connection with a network node but any network node can communicate with the MGS whenever required. To ensure efficiency, the protocol uses symmetric key cryptography to implement the authentication service. However, to achieve storage scalability, the protocol uses a pseudo random function (PRF) to bind the secret key of a client to its identity using the secret key of its server. In addition, the protocol possesses an efficient server revocation mechanism along with an efficient server re-assignment mechanism, which makes the protocol robust against server node compromise.
Resumo:
The basic requirements for secure communication in a vehicular ad hoc network (VANET) are anonymous authentication with source non-repudiation and integrity. The existing security protocols in VANETs do not differentiate between the anonymity requirements of different vehicles and the level of anonymity provided by these protocols is the same for all the vehicles in a network. To provide high level of anonymity, the resource requirements of security protocol would also be high. Hence, in a resource constrained VANET, it is necessary to differentiate between the anonymity requirements of different vehicles and to provide the level of anonymity to a vehicle as per its requirement. In this paper, we have proposed a novel protocol for authentication which can provide multiple levels of anonymity in VANETs. The protocol makes use of identity based signature mechanism and pseudonyms to implement anonymous authentication with source non-repudiation and integrity. By controlling the number of pseudonyms issued to a vehicle and the lifetime of each pseudonym for a vehicle, the protocol is able to control the level of anonymity provided to a vehicle. In addition, the protocol includes a novel pseudonym issuance policy using which the protocol can ensure the uniqueness of a newly generated pseudonym by checking only a very small subset of the set of pseudonyms previously issued to all the vehicles. The protocol cryptographically binds an expiry date to each pseudonym, and in this way, enforces an implicit revocation for the pseudonyms. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.
Resumo:
The Large Hadron Collider (LHC) has completed its run at 8 TeV with the experiments ATLAS and CMS having collected about 25 fb(-1) of data each. Discovery of a light Higgs boson coupled with lack of evidence for supersymmetry at the LHC so far, has motivated studies of supersymmetry in the context of naturalness with the principal focus being the third generation squarks. In this work, we analyze the prospects of the flavor violating decay mode (t) over tilde (1) -> c chi(0)(1) at 8 and 13 TeV center-of-mass energy at the LHC. This channel is also relevant in the dark matter context for the stop-coannihilation scenario, where the relic density depends on the mass difference between the lighter stop quark ((t) over tilde (1)) and the lightest neutralino (chi(0)(1)) states. This channel is extremely challenging to probe, especially for situations when the mass difference between the lighter stop quark and the lightest neutralino is small. Using certain kinematical properties of signal events we find that the level of backgrounds can be reduced substantially. We find that the prospect for this channel is limited due to the low production cross section for top squarks and limited luminosity at 8 TeV, but at the 13 TeV LHC with 100 fb(-1) luminosity, it is possible to probe top squarks with masses up to similar to 450 GeV. We also discuss how the sensitivity could be significantly improved by tagging charm jets.
Resumo:
Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.
Resumo:
We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.
Binaural Signal Processing Motivated Generalized Analytic Signal Construction and AM-FM Demodulation
Resumo:
Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.
Resumo:
Significance: The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. Recent Advances: The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. Critical Issues and Future Directions: The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.
Resumo:
In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. (C) 2014 Optical Society of America
Resumo:
We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.
Resumo:
This paper demonstrates light-load instability in open-loop induction motor drives on account of inverter dead-time. The dynamic equations of an inverter fed induction motor, incorporating the effect of dead-time, are considered. A procedure to derive the small-signal model of the motor, including the effect of inverter dead-time, is presented. Further, stability analysis is carried out on a 100-kW, 415V, 3-phase induction motor considering no-load. For voltage to frequency (i.e. V/f) ratios between 0.5 and 1 pu, the analysis brings out regions of instability on the V-f plane, in the frequency range between 5Hz and 20Hz. Simulation and experimental results show sub-harmonic oscillations in the motor current in this region, confirming instability as predicted by the analysis.
Resumo:
It has been shown that iterative re-weighted strategies will often improve the performance of many sparse reconstruction algorithms. However, these strategies are algorithm dependent and cannot be easily extended for an arbitrary sparse reconstruction algorithm. In this paper, we propose a general iterative framework and a novel algorithm which iteratively enhance the performance of any given arbitrary sparse reconstruction algorithm. We theoretically analyze the proposed method using restricted isometry property and derive sufficient conditions for convergence and performance improvement. We also evaluate the performance of the proposed method using numerical experiments with both synthetic and real-world data. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We present a physics-based closed form small signal Nonquasi-static (NQS) model for a long channel Common Double Gate MOSFET (CDG) by taking into account the asymmetry that may prevail between the gate oxide thickness. We use the unique quasi-linear relationship between the surface potentials along the channel to solve the governing continuity equation (CE) in order to develop the analytical expressions for the Y parameters. The Bessel function based solution of the CE is simplified in form of polynomials so that it could be easily implemented in any circuit simulator. The model shows good agreement with the TCAD simulation at-least till 4 times of the cut-off frequency for different device geometries and bias conditions.