930 resultados para Sewage -- Purification -- Anaerobic treatment
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.
Resumo:
This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.
Resumo:
The processing of industry and domestic effluents in wastewater treatment plants reduces the amount of polluted material and forms reusable water and dehydrated sludge. the generation of hazardous municipal sludge can be decreased, as well as the impact on surface and underground water and the risk to human health. The aim this study is to verify the possibility to use sintered sewage sludge as support material after thermal treatment in the production of a filtering material to water supply systems. After thermal treatment the sewage sludge ash was characterized by X-ray fluorescence (XRF), leaching test and water solubilization. Dehydration of sludge was performed by controlled heating at temperatures of 180 degrees C, 350 degrees C, 600 degrees C, 850 degrees C and 1000 degrees C for 3 hours.
Resumo:
Sea anemones contain a variety of biologically active substances. Bunodosoma caissarum is a sea anemone from the Cnidaria phylum, found only in Brazilian coastal waters. The aim of the present work was to study the biological effects of PLA(2) isolated from the sea anemone B. caissarum on the isolated perfused kidney, the arteriolar mesenteric bed and on insulin secretion. Specimens of B. caissarum were collected from the Sao Vicente Channel on the southern coast of the State of São Paulo, Brazil. Reverse phase HPLC analysis of the crude extract of B. caissarum detected three PLA(2) proteins (named BcPLA(2)1, BCPLA(2)2 and BcPLA(2)3) found to be active in B. caissarum extracts. MALDI-TOF mass spectrometry of BcPLA(2)1 showed one main peak at 14.7 kDa. The N-terminal amino acid sequence of BcPLA(2)1 showed high amino acid sequence identity with PLA(2) group III protein isolated from the Mexican lizard (PA23 HELSU, HELSU, PA22 HELSU) and with the honey bee Apis mellifera (PLA(2) and 1POC_A). In addition, BcPLA(2)1 also showed significant overall homology to bee PLA(2). The enzymatic activity induced by native BCPLA(2)1 (20 mu g/well) was reduced by chemical treatment with p-bromophenacyl bromide (p-BPB) and with morin. BcPLA(2)1 strongly induced insulin secretion in presence of high glucose concentration. In isolated kidney, the PLA(2) from B. caissarum increased the perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, and sodium, potassium and chloride levels of excretion. BcPLA(2)1, however, did not increase the perfusion pressure on the mesenteric vascular bed. In conclusion, PLA(2), a group III phospholipase isolated from the sea anemone B. caissarum, exerted effects on renal function and induced insulin secretion in conditions of high glucose concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to evaluate the effect of substituting chemical nitrogen (N) fertilization for equivalent N levels from sewage sludge of Wastewater Treatment Plant (WTP) on sunflower plant development. Nutrient levels in physiologically mature leaves and seeds, besides nutrient exportation during a 130-day assay, were also assessed. The experiment was carried out in 100 m(2) permanent plots at Sao Manuel Farm, which belongs to School of Agronomical Sciences, São Paulo State University-UNESP, Botncatu, São Paulo State, Brazil. The farm is located in the municipality of Sao Manuel, São Paulo State. Experimental design was in randomized blocks including 5 treatments and 5 replicates. Treatments were: T1 - chemical N fertilization according to the recommendation for the culture; T2 - 50% N from sewage sludge and 50% N from chemical fertilization; T3 - 100% N from sewage sludge; T4 - 150% N from sewage sludge; T5 - 200% N from sewage sludge. For all treatments, equal amounts of P and K fertilization were applied. Treatments differed for plant height from 21 to 64 days, stern diameter from 28 to 57 days, and leaf number from 21 to 38 days. Seed nutrient levels slightly varied; however, the quantities of exported N, P, Mg, Fe and Zn varied as sewage sludge levels increased.
Resumo:
In the urban areas of the cities a larger problem of destiny of effluents of the treatment stations is verified due to the junction of the sewages in great volumes. This way the hidroponic cultive becomes important, for your intensive characteristic, as alternative of reuse. This work presents as objective the improvement of the relation hidric-nutritious of the hidroponic cultive of green forage (FVH) using treaty sewage. The production of forage was with corn (Zea mays L.), using double hybrid AG1051, in the experimental field of the Federal University of Rio Grande do Norte (UFRN), in the city of Natal-RN-Brazil. The treated effluent essentially domestic had origin of anaerobic reactor, type decant-digester of two cameras in series followed by anaerobic filters drowned. The hidroponic experimental system was composed of 08 stonemasons, with limited contours for masonry of drained ceramic brick, measuring each one 2,5 meters in length for 1,0 meter of width, with inclination of 4% (m/m) in the longitudinal sense, leveled carefully, in way to not to allow preferential roads in the flow. These dimensions, the useful area of Isow was of 2 square meters. The stonemasons of cultive were waterproof (found and lateral) with plastic canvas of 200 micres of thickness, in the white color. Controlled the entrance and exit of the effluente in the stonemasons, with cycles of 12,68 minutes, it being water of 1,18 minutes. The treatments were constituted of: T1 - 24 hours/day under it waters with flow of 2 L/min; T2 - 12 hours/day under waters with flow of 4 L/min; T3 - 12 hours/day under waters with flow of 2 L/min; and T4 - 16 hours/day under waters with flow of 3 L/min. There were evaluations of the evapotranspirometric demand, of hidroponic system affluent and effluent seeking to characterize and to monitor physical-chemical parameters as: pH, temperature, Electric Conductivity and Fecal Coliforms. This last one was analyzed to the 11 days after isow (DAS) and to the 14 DAS. The others were analyzed daily. I sow it was accomplished in the dates of February 21, 2007, first experiment, and April 10, 2007, second experiment. The density of Isow was of 2 kg of seeds, germinated before 48 hours, for square meter of stonemason. The statistic delineament was it casual entirely with two repetitions, in two experiments. It was applied Tukey test of average to five percent of probability. The cultivation cycle was of 14 DAS with evapotranspirometric demand maximum, reached by T1, of 67,44 mm/day. The analyzed parameters, as mass of green matter - Kg, productivity-Kg/m2 and reason of production of seed FVH/Kg used in Isow, the best result was presented by T1, obtaining value of up to 19,01 Kg/m2 of cultive. Without significant difference, the T4 presented greats values with 16 hours under cycle of water. The Treatments 2 and 3 with 12 hours under cycle of water, they obtained inferior results to the other Treatments. As treatment system, came efficient in the reduction of the salinity. T1 obtained reduction medium maxim of 62,5%, to the 7 DAS, in the amount of salts that enter in the system in they are absorbed in the cultivation. The cultivation FVH acted reducing the microbiologic load. Significant percentile of reduction they were reached, with up to 90,23% of reduction of Units of Colonies (UFC), constituting, like this, the Hidroponic System as good alternative of treatment of effluents of Reactors of high Efficiency
Resumo:
This study investigates a new treatment system of wastewater by anaerobic and aerobic biological filters for nitrogen modification. The main objective of this study was evaluate, on a pilot scale, quantitatively and qualitatively the bacterian nitrifying community in a experimental sewage treatment system made by aerobics biological filters in series, in search of figure out the dynamic of nitrogen modification process. It was collected and laboratorial analysed microbiologically, regarding NMP of Nitrosomonas e Nitrobacter, and physical-chemically considering nitrogen sequence. We conclude that: the association in aerobic biological filters under nutrition controlled conditions and oxygen level allows the appearance of bacterian community responsible for the nitrogen modification; the method used, despite its limitations, provided the selection of autotrophic nitrifying microorganisms, allowing the identification of Nitrosomonas and Nitrobacter; the flow direction tested in the experimental unit did not affect the nitrifying bacterial community, certainly because they were kept drowned and did not occur flow speed that could breake the formed biomass; the nitrification process happened in aerated biological filters in all phases of the research, comproved by microbiological tests; in the third phase of the research the increase of the oxygen rate was significant for the nitrificant bacterian community in the aerate biological filters, allowing its growth, occurring relation between the efficiency of nitrification system and the quantity of organisms responsible for this process; the conduit used in aerated biological filters showed satisfactory performance support material to the nitrifying bacteria development
Resumo:
Although the good performance in organic matter and suspended solids removal, the anaerobic reactors are unable to remove ammonia nitrogen from sewage, which makes indispensable to include a step of post-treatment for removal of ammonia or nitrate as necessary. This paper presents the performance of a new variant technology, where the nitrification unit, preceded by anaerobic units, is a submerged aerated biological filter, without continuous sludge discharge in their daily operation. The oxygenation system is very simple and inexpensive, consisting of perforated hoses and compressors. The anaerobic reactors are a septic tank with two chambers followed (8.82 m³) and two parallel anaerobic filters (36 m³ each) filled with ceramic bricks and conics plastic parts. Both followed aerated filters were filled with cut corrugated conduit. The study evaluated the behavior of the system with constant domestic sewage flow (10 m³/d) and different aeration conditions, are these: stage 01, when applied air flow of 0.01 m³ air/min in both aerated filter; stage 02, remained in the initial air flow rate in the second aerated filter and increased at the first to 0.05 m³ air/min; at last, at last, in stage 03, the air flow rate of first aerated filter was 0.10 m³ air/min and on the second remained at 0.01 m³ air/min. The filter FA1 received load of 0.41 kg COD/m³.d, 0.37 kg COD/m³.d and 0.26 kg COD/m³.d on phases 01, 02 and 03, respectively. The FA2 received loads of 0.25 kg COD/m³.d, 0.18 kg COD/m³.d and 0.14 kg COD/m³.d on phases 01, 02 and 03, respectively. During stage 01, were found the following results: 98% removals of BODtotal and 92% of CODtotal, with effluent presenting 9 mg/L of BODtotal final average and 53 mg/L of CODtotal average; suspended solids removals of 93%, with a mean concentration of 10 mg/L in the final effluent; 47% reduction of ammonia of FA2 to FAN 's, presenting average of 28 mg NNH3/ L of ammonia in the effluent with; the dissolved oxygen levels always remained around 2.0 mg/L. During stage 02, were found removals of 97% and 95% to BODtotal and suspended solids, respectively, with average final concentrations of 8 and 7 mg/L, respectively; was removed 60% of ammonia, whose final concentration was 16.3 mg NNH3/ L, and nitrate was increased to a final average concentration of 16.55 mg N-NO3/L. Finally, the stage 03 provided 6 mg/L of DBOtotal (98% removal) and 23 mg/L of CODtotal (95% removal) of final effluent concentrations average. At this stage was identified the higher ammonia oxidation (86%), with final effluent showing average concentration of 6.1 mg N-NH3/L, reaching a minimum of 1.70 mg N-NH3/L. In some moments, during stage 03, there was a moderate denitrification process in the last aerated filter. The average turbidity in the effluent showed around 1.5 NTU, proving the good biomass physical stability. Therefore, the results demonstrate the submerged biological filters potential, filled with high void ratio material (98%), and aerated with hoses and compressor adoption, in the carbonaceous and nitrogenous matter oxidation, also generating an effluent with low concentration of solids
Resumo:
Waste stabilization ponds are the main technology in use for domestic sewage treatment in Rio Grande do Norte State (RN), northeast Brazil. The are around 80 systems, constructed mainly by municipal city halls, being series comprised by a primary facultative pond followed by two maturation ponds the most used configuration. Due to problems related with the production and destination of sludge and generation of bad odors, the designers have avoided the use of anaerobic lagoons. The majority of systems are rarely monitored to verify their efficiencies and to get new project parameters for future designing. This work has as purpose to make a diagnosis of efficiency of three series of waste stabilization pond series (WSPS) of Jardim Lola 1, Jardim Lola 2 and Beira Rio, located in the North Zone of the city of the Natal/RN, treating domestic raw sewage, on the removal of organic matter and thermotolerant coliform, comparing the operational conditions of the systems this inside of the bands foreseen in the project, through parameters BOD5, QOD, thermotolerant coliforms, dissolved oxygen, pH, temperature, ammoniac nitrogen, total and suspended solids. The work was carried through in the WSPS, all constituted by a primary facultative pond followed by two maturation ponds. Socioeconomic characteristics of population are predominantly low and all the plants are very near of the contributing basins. The series were monitored from of May the November of 2002, totalizing 20 collections of grab samples of raw sewage and ponds effluents between 8:00 and 9:50 h. The main aspect to be detached by the results was the great concentration of organic matter (BOD and COD) and microorganisms the raw sewage which were around two times more concentrated than those values foreseen one in project. Considering all series the highest removals of organic matter were observed in system Beira Rio (84 and 78% of BOD and COD, respectively), which presented high hydraulic detention time (TDH = 89 days). On the other hand, Jardim Lola 1 and Jardim Lola 2 presented a much lower values of HDT (36 days and 18 days respectively) and their removals of BOD and COD were the same (76% and 60%, respectively). The Beira Rio WSPS, was the most efficient verified in relation to solids and ammonia, proving the great influence of the operational variables such as HDT and applied surface organic loadings on the performance of pond series. Although the treatment plants have reached efficiencies of thermotolerant coliforms around 99,999%, the concentrations in the final effluent can be considered very high for launching in aquatic bodies, particularly those produced by Jardim Lola 1 and Jardim Lola 2 series
Resumo:
Disposal of tons of sludge produced daily by sewage treatment plants in large cities is a serious problem. Because recycling and application in agriculture have been proposed, the Brazilian National Environmental Council (CONAMA, 2006) issued a legal norm that regulates the use of the sewage sludge (SS) in crops. Due to the complex chemical nature of such products, characterization by analytical methods for health and environmental risk assessment has severe limitations. To overcome such limitations, it is necessary to (1) assess the toxicological potential of SS and (2) identify possible adverse effects in vivo in order to provide critical information for future environmental regulations. The present study was conducted to determine the potential toxicity of SS obtained from a representative urban treatment plant located in the São Paulo State, Brazil. Male and female Wistar rats were fed ad libitum a pelleted diet containing varying amounts of SS. No relevant clinical, hematological, urinary, or gross organ morphological alterations were observed in both genders of rats orally exposed to SS at up to 3.8 g/kg/d for 90 d. Sewage slude produced increased incidence of centrilobular hepatocyte hyperplasia at the high dose and significantly increased aspartate aminotransferease (AST) activities at all doses in both genders. Although the present data indicate some liver involvement, these alterations were considered adaptative and not toxicologically relevant, as the responses were relatively mild, not dose dependent, and no other parameters were markedly affected. The present results may contribute to the establishment of protocols for potential usage in SS agricultural soil application.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.