916 resultados para Set topology
Resumo:
It has been shown earlier1] that the relaxed force constants (RFCs) could be used as a measure of bond strength only when the bonds form a part of the complete valence internal coordinates (VIC) basis. However, if the bond is not a part of the complete VIC basis, its RFC is not necessarily a measure of bond strength. Sometimes, it is possible to have a complete VIC basis that does not contain the intramolecular hydrogen bond (IMHB) as part of the basis. This means the RFC of IMHB is not necessarily a measure of bond strength. However, we know that IMHB is a weak bond and hence its RFC has to be a measure of bond strength. We resolve this problem of IMHB not being part of the complete basis by postulating `equivalent' basis sets where IMHB is part of the basis at least in one of the equivalent sets of VIC. As long as a given IMHB appears in one of the equivalent complete VIC basis sets, its RFC could be used as a measure of bond strength parameter.
Resumo:
This paper proposes a novel decision making framework for optimal transmission switching satisfying the AC feasibility, stability and circuit breaker (CB) reliability requirements needed for practical implementation. The proposed framework can be employed as a corrective tool in day to day operation planning scenarios in response to potential contingencies. The switching options are determined using an efficient heuristic algorithm based on DC optimal power flow, and are presented in a multi-branch tree structure. Then, the AC feasibility and stability checks are conducted and the CB condition monitoring data are employed to perform a CB reliability and line availability assessment. Ultimately, the operator will be offered multiple AC feasible and stable switching options with associated benefits. The operator can use this information, other operating conditions not explicitly considered in the optimization, and his/her own experience to implement the best and most reliable switching action(s). The effectiveness of the proposed approach is validated on the IEEE-118 bus test system. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The 3-Hitting Set problem involves a family of subsets F of size at most three over an universe U. The goal is to find a subset of U of the smallest possible size that intersects every set in F. The version of the problem with parity constraints asks for a subset S of size at most k that, in addition to being a hitting set, also satisfies certain parity constraints on the sizes of the intersections of S with each set in the family F. In particular, an odd (even) set is a hitting set that hits every set at either one or three (two) elements, and a perfect code is a hitting set that intersects every set at exactly one element. These questions are of fundamental interest in many contexts for general set systems. Just as for Hitting Set, we find these questions to be interesting for the case of families consisting of sets of size at most three. In this work, we initiate an algorithmic study of these problems in this special case, focusing on a parameterized analysis. We show, for each problem, efficient fixed-parameter tractable algorithms using search trees that are tailor-made to the constraints in question, and also polynomial kernels using sunflower-like arguments in a manner that accounts for equivalence under the additional parity constraints.
Resumo:
The ATLAS and CMS collaborations at the LHC have performed analyses on the existing data sets, studying the case of one vector-like fermion or multiplet coupling to the standard model Yukawa sector. In the near future, with more data available, these experimental collaborations will start to investigate more realistic cases. The presence of more than one extra vector-like multiplet is indeed a common situation in many extensions of the standard model. The interplay of these vector-like multiplet between precision electroweak bounds, flavour and collider phenomenology is a important question in view of establishing bounds or for the discovery of physics beyond the standard model. In this work we study the phenomenological consequences of the presence of two vector-like multiplets. We analyse the constraints on such scenarios from tree-level data and oblique corrections for the case of mixing to each of the SM generations. In the present work, we limit to scenarios with two top-like partners and no mixing in the down-sector.
Resumo:
Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.
Resumo:
Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.
Resumo:
We performed numerical experiments on a one-dimensional elastic solid oscillating in a two-dimensional viscous incompressible fluid with the intent of discerning the interplay of vorticity and elastodynamics in flapping wing propulsion. Perhaps for the first time, we have established the role of foil deflection topology and its influence on vorticity generation, through spatially and temporally evolving foil slope and curvature. Though the frequency of oscillation of the foil has a definite role, it is the phase relation between foil slope and pressure that determines thrust or drag. Similarly, the phase difference between flapping velocity, and pressure and inertial forces, determine the power input to the foil, and in turn drives propulsive efficiency. At low frequencies of oscillation, the sympathetic slope and curvature of deformation of the foil allow generation of leading-edge vortices that do not separate; they cause substantial rise in pressure between the leading edge and mid-chord. The circulatory component of pressure is determined primarily by the leading-edge vortex and therefore thrust too is predominantly circulatory in origin at low frequencies. In the intermediate and high-frequency range, thrust and drag on the foil spatially alternate and non-circulatory forces dominate over circulatory and viscous forces. For the mass ratios we simulated, thrust due to flapping varies quadratically as a function of Strouhal number or trailing-edge flapping velocity; further, the trailing edge flapping velocities peak at the same set of frequencies where the thrust is also a maximum. Propulsive efficiency, on the other hand, is roughly a mirror image of the thrust variation with respect to Strouhal number. Given that most instances of flapping propulsion in nature are primarily through distributed muscular actuation that enables precise control of deformation shape, leading to high thrust and efficiency, the results presented here are pointers towards understanding some of the mechanisms that drive thrust and propulsive efficiency.
Resumo:
Background: Aligning similar molecular structures is an important step in the process of bio-molecular structure and function analysis. Molecular surfaces are simple representations of molecular structure that are easily constructed from various forms of molecular data such as 3D atomic coordinates (PDB) and Electron Microscopy (EM) data. Methods: We present a Multi-Scale Morse-Smale Molecular-Surface Alignment tool, MS3ALIGN, which aligns molecular surfaces based on significant protrusions on the molecular surface. The input is a pair of molecular surfaces represented as triangle meshes. A key advantage of MS3ALIGN is computational efficiency that is achieved because it processes only a few carefully chosen protrusions on the molecular surface. Furthermore, the alignments are partial in nature and therefore allows for inexact surfaces to be aligned. Results: The method is evaluated in four settings. First, we establish performance using known alignments with varying overlap and noise values. Second, we compare the method with SurfComp, an existing surface alignment method. We show that we are able to determine alignments reported by SurfComp, as well as report relevant alignments not found by SurfComp. Third, we validate the ability of MS3ALIGN to determine alignments in the case of structurally dissimilar binding sites. Fourth, we demonstrate the ability of MS3ALIGN to align iso-surfaces derived from cryo-electron microscopy scans. Conclusions: We have presented an algorithm that aligns Molecular Surfaces based on the topology of surface curvature. Awebserver and standalone software implementation of the algorithm available at http://vgl.serc.iisc.ernet. in/ms3align.
Resumo:
In this study, analysis of extending the linear modulation range of a zero common-mode voltage (CMV) operated n-level inverter by allowing reduced CMV switching is presented. A new hybrid seven-level inverter topology with a single DC supply is also presented in this study and inverter operation for zero and reduced CMV is analysed. Each phase of the inverter is realised by cascading two three-level flying capacitor inverters with a half-bridge module in between. Proposed inverter topology is operated with zero CMV for modulation index <86% and is operated with a CMV magnitude of V-dc/18 to extend the modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilising the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology.
Resumo:
A finite flexible perforated panel set in a differently perforated rigid baffle is considered. The radiation efficiency from such a panel is derived using a 2-D wavenumber domain formulation. This generalization is later used to represent a more practical case of a perforated panel fixed in an unperforated baffle. The perforations are in the form of an array of uniformly distributed circular holes. A complex impedance model for the holes available in the literature is used. An averaged fluid particle velocity is derived using the continuity equation and the surface pressure is derived using an appropriate momentum equation. The discontinuity in the perforate impedance (due to different hole dimensions or perforation ratio) at the panel-baffle interface is carefully taken into account. It is found that there exists a `coupling' of different wavenumbers of the spatially mean fluid particle velocity field. The change in the resonance frequencies and the modeshapes of the panel due to the perforations is taken into account using the Receptance method. Analytical expressions for the radiated power and radiation efficiency are derived in an integral form and numerical results are presented. Several comparisons are made to understand the radiation efficiency curves. Since both the resistive and reactive components of the hole impedance are taken into account, the model is directly applicable to micro-perforated panels also. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
用数值模拟方法来研究气-液两相流动与传热现象是当今多相流领域的一个热门课题.由于两相流固有的复杂性,气-液两相流界面迁移现象的数值模拟一直是两相流研究中的一大难点.本文介绍了捕捉气-液两相流相界面运动的水平集方法(Level Set)及其研究进展,介绍了求解Level Set输运方程的3种方法,即一般差分格式、Superbee-TVD格式和Runge-Kutta法-5阶WENO组合格式.结合主流场的求解,分别用这3种方法对4种典型相界面在5种流场中的迁移特性进行了模拟计算,并对计算结果进行了比较和分析.结果表明,Runge-Kutta法-5阶WENO组合格式求解Level Set输运方程的效果最好,在以后的计算中将主要采用这种组合格式来进行气-液相界面输运方程的求解.
Resumo:
Three types of streamline topology in a Karman vortex street flow are shown under the variation of spatial parameters. For the motion of dilute particles in the Karman vortex street flow, there exist a route of bifurcation to a chaotic orbit and more attractors in a bifurcation diagram for the proportion of particle density to fluid density. Along with the increase of spatial parameters in the flow field, the bifurcation process is suspended, as well as more and more attractors emerge. In the motion of dilute particles, a drag term and gravity term dominate and result in the bifurcation phenomenon.