911 resultados para Sensory analyses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Missed appointments represent an important medical and economical issue. Few studies on the subject are reported in the literature, particularly regarding adolescents. Our aim was to characterize missed and cancelled appointments in a multidisciplinary outpatient clinic for adolescents, to assess the effectiveness of a policy aimed at reducing missed appointments by introducing payment for those missed appointments not cancelled in advance, and to compare the rates between staff and resident physicians. A total of 32,816 consultations (representing 35 patients aged 12-20 years, 82.4% females) between 1999 and 200 were analysed. The missed appointment rate was 11.8% whilst another 10.9% were cancellations. Females cancelled more than males (11.3% vs. 8.4%, AOR 1.31, 99% CI 1.08-1.59), but there was no difference for missed appointments (11.6% vs. 12.3%, AOR 0.88, 99% CI 0.61-1.08). April and June to October (vacation months) were associated with more missed appointments. Globally mornings had higher rates of missed appointments than afternoons (13.6% vs. 11.2%, AOR 1.25, 99% CI 1.11-1.40). There was a slight difference in missed appointment rates between staff physicians and residents (10.4%; 11.8%, AOR 1.20, 99% CI 1.08-1.33). Missed appointment rates before and after the new policy on missed appointments were similar (1999-2003: 11.9%; 2004-2006: 11.6%, AOR 0.96, 99% CI 0.83-1.10). Conversely, cancellation rates increased from 8.4% (1999-2003) to 14.5% (2004-2006) (AOR 1.83, 99% CI 1.63-2.05). Attendance rates among adolescents show variations depending on vacation and school hours. Being attentive to these factors could help prevent missed appointments. Although having to pay for missed appointments does not increase attendance, it increases cancellations with the advantage that the appointment can be rescheduled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Vitamin D insufficiency has been associated with the occurrence of various types of cancer, but causal relationships remain elusive. We therefore aimed to determine the relationship between genetic determinants of vitamin D serum levels and the risk of developing hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). METHODOLOGYPRINCIPAL FINDINGS: Associations between CYP2R1, GC, and DHCR7 genotypes that are determinants of reduced 25-hydroxyvitamin D (25[OH]D3) serum levels and the risk of HCV-related HCC development were investigated for 1279 chronic hepatitis C patients with HCC and 4325 without HCC, respectively. The well-known associations between CYP2R1 (rs1993116, rs10741657), GC (rs2282679), and DHCR7 (rs7944926, rs12785878) genotypes and 25(OH)D3 serum levels were also apparent in patients with chronic hepatitis C. The same genotypes of these single nucleotide polymorphisms (SNPs) that are associated with reduced 25(OH)D3 serum levels were found to be associated with HCV-related HCC (P = 0.07 [OR = 1.13, 95% CI = 0.99-1.28] for CYP2R1, P = 0.007 [OR = 1.56, 95% CI = 1.12-2.15] for GC, P = 0.003 [OR = 1.42, 95% CI = 1.13-1.78] for DHCR7; ORs for risk genotypes). In contrast, no association between these genetic variations and liver fibrosis progression rate (P>0.2 for each SNP) or outcome of standard therapy with pegylated interferon-α and ribavirin (P>0.2 for each SNP) was observed, suggesting a specific influence of the genetic determinants of 25(OH)D3 serum levels on hepatocarcinogenesis. CONCLUSIONSSIGNIFICANCE: Our data suggest a relatively weak but functionally relevant role for vitamin D in the prevention of HCV-related hepatocarcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the kinetics of humoral and cellular immune responses in first-time vaccinees and re-vaccinees with the yellow fever 17DD vaccine virus was analyzed. Flow cytometric analyses were used to determine percentual values of T and B cells in parallel to the yellow fever neutralizing antibody production. All lymphocyte subsets analyzed were augmented around the 30th post vaccination day, both for first-time vaccinees and re-vaccinees. CD3+ T cells increased from 30.8% (SE ± 4%) to 61.15% (SE ± 4.2%), CD4+ T cells from 22.4% (SE ± 3.6%) to 39.17% (SE ± 2%) with 43% of these cells corresponding to CD4+CD45RO+ T cells, CD8+ T cells from 15.2% (SE ± 2.9%) to 27% (SE ± 3%) with 70% corresponding to CD8+CD45RO+ T cells in first-time vaccinees. In re-vaccinees, the CD3+ T cells increased from 50.7% (SE ± 3%) to 80% (SE ± 2.3%), CD4+ T cells from 24.9% (SE ± 1.4%) to 40% (SE ± 3%) presenting a percentage of 95% CD4+CD45RO+ T cells, CD8+ T cells from 19.7% (SE ± 1.8%) to 25% (SE ± 2%). Among CD8+CD38+ T cells there could be observed an increase from 15 to 41.6% in first-time vaccinees and 20.7 to 62.6% in re-vaccinees. Regarding neutralizing antibodies, the re-vaccinees presented high titers even before re-vaccination. The levels of neutralizing antibodies of first-time vaccinees were similar to those presented by re-vaccinees at day 30 after vaccination, indicating the success of primary vaccination. Our data provide a basis for further studies on immunological behavior of the YF 17DD vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory information is an important factor in shaping neuronal circuits during development and adulthood. In the barrel cortex of adult rodents, cells from layer IV are able to adapt their functional state to an increased flow of sensory information from the mystacial whisker follicles. Previous studies in our group have shown that whisker stimulation induces the formation of inhibitory synapses in the corresponding barrel (Knott et al., 2002) and decreases neuronal responses toward the deflection of the stimulated whisker (Quairiaux et al., 2007). Together these observations have turned the barrel cortex into a model to study homeostatic plasticity. At the cellular level, neuronal activity triggers intracellular signaling cascades leading to a transcriptional response. To further characterize the molecular pathways involved in the synaptic changes after whisker stimulation in the adult mouse, a previous doctoral student in our group performed a microarray analysis on laser-dissected barrels in sections through layer IV. This study identified the regulation (up and down) of a series of genes in the stimulated barrels (thesis of Johnston-Wenger, 2010). We here focused on ten genes that presented the highest fold change according to the microarray analysis. Out of these genes, 7 are known as neuronal activity-dependent genes (Tnncl, Nptx2, Sorcs3, Ptgs2, Nr4a2, Npas4 and Adcyapl) whereas three have so far not been related to neuronal plasticity (Scn7a, Pcdhl5 and Cede3). The study aimed at confirming the results of the microarray analysis and localizing molecular modifications in the stimulated barrel column at the cellular level. In situ hybridization for Pcdhl5 after different periods of whisker stimulation (3, 6, 9, 15, 24 hrs) allowed us to confirm that the 1.25 fold change used for the microarray analysis is an appropriate threshold for considering a regulation significant after sensory-stimulation. Moreover, we confirmed with in situ hybridization a significant upregulation of the genes of interest in the stimulated barrels. In situ hybridization and immunohistochemistry allowed us to observe the distribution of the genes of interest and the corresponding protein products at the cellular level. Three observations were made: 1) alterations of the expression was restricted to the stimulated barrels for all genes tested; 2) within a barrel column not all cells responded to whisker stimulation with an altered gene expression; 3) in the stimulated barrels, two different patterns of mRNA and protein expression can be distinguished. We hypothesize that this segregation of the activity-induced gene expression reflects the segregation of the two principal thalamocortical pathways conveying the sensory information to the barrel cortex. Moreover, only neurons reaching the critical threshold will modify their gene expression program resulting in structural as well as physiological modifications that prevent the subsequent propagation of the excess of excitation to the postsynaptic targets. The activity-induced gene expression is therefore adapted in a cell-type-specific manner to induce a homeostatic response to the entire neuronal network involved in the integration of the sensory information. This to our knowledge the first study showing the distinct, but complementary contribution of the two thalamocortical pathways in experience-dependent plasticity in the adult mouse barrel cortex. -- L'information sensorielle nous permet de continuellement façonner nos circuits neuronaux autant durant le développement qu'à l'âge adulte. Chez le rongeur l'information sensorielle perçue par les vibrisses est intégrée au niveau du cortex somatosensoriel primaire (appelé en anglais « barrel cortex ») dont les cellules de la couche IV sont capables d'adapter leur état fonctionnel en réponse à une augmentation d'activité neuronale. Ce modèle expérimental a permis à notre groupe de recherche d'observer des changements rapides du circuit neuronal en fonction de l'activité sensorielle. En effet, la stimulation continue d'une vibrisse d'une souris adulte pendant 24 heures induit non seulement un remaniement synaptique (Knott et al., 2002), mais également des changements physiologiques au niveau des neurones du tonneau correspondant (Quairiaux et al., 2007). Ces observations nous permettent d'affirmer que le « barrel cortex » est un modèle approprié pour y étudier la plasticité synaptique. Au niveau cellulaire, l'activité neuronale déclenche des cascades de signalisation intracellulaire résultant en une réponse transcriptionnelle. Afin de caractériser les voies moléculaires impliquées dans la plasticité synaptique, une puce à ARN nous a permis de comparer l'expression de gènes entre un tonneau correspondant à une vibrisse stimulée et un tonneau d'une vibrisse non-stimulée (Nathalie). Cette analyse a révélé un certain nombre de gènes régulés de manière positive ou négative par l'augmentation de l'activité neuronale. Nous nous sommes concentrés sur 10 gènes dont l'expression est fortement régulée. L'expression de sept d'entre eux a déjà été démontrée comme dépendante de l'activité neuronale (Tnncl, Nptx2, Sorcs3, Ptgs2, Nr4a2, Npas4 otAdcyapl) alors que l'expression des trois autres (Scn7a, Pcdhl5 et Cedei) n'a pour le moment pas encore été liée à la plasticité neuronale. Le but de cette thèse est de confirmer les résultats de la puce à ARN et de déterminer dans quel type cellulaire ces gènes sont exprimés. L'hybridation in situ pour le gène Pcdhl5, après différentes périodes de stimulation des vibrisses (3, 6, 9, 15 et 24 heures), nous a permis de confirmer que le seuil de 1.25x utilisé dans l'analyse de la puce à ARN est approprié pour considérer qu'un gène est régulé de manière significative par la stimulation sensorielle. Nous avons également pu confirmer à l'aide de cette technique que la stimulation sensorielle augmente significativement l'expression de ces dix gènes. L'expression de ces gènes au niveau cellulaire a été observée à l'aide des techniques d'hybridation in situ et d'immunohistochimie. Trois observations ont été faites : 1) la régulation de ces gènes est restreinte aux tonneaux correspondants aux vibrisses stimulées ; 2) au niveau d'une colonne corticale correspondant aux vibrisses stimulées, seules certaines cellules présentent une altération de leur expression génique ; 3) au niveau des tonneaux stimulés, deux profils d'expression d'ARNm et de protéines sont observés. Notre hypothèse est que cette distribution pourrait correspondre à la terminaison ségrégée des deux voies thalamocortical qui amènent l'information sensorielle dans le cortex cérébral. De plus, seul les neurones atteignant le seuil critique d'activation modifient leur expression génique en réponse à la stimulation sensorielle. Ces changements d'expression géniques vont permettre à la cellule de modifier ses propriétés structurales et physiologiques de manière a prevenir la propagation d'un excès d'activité neuronale au niveau de ses cibles postsynaptics. L'activité neuronale agit donc spécifiquement sur certains types cellulaires de maniere a induire une réponse homéostatique au niveau du réseau neuronal impliqué dans l'integration de l'information sensorielle. Nos travaux démontrent pour une première fois que les deux voies sensorielles contribuent d'une manière distincte et complémentaire à la plasticité corticale induite par un changement de l'activité sensorielle chez la souris adulte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the crucial steps of authentication of aDNA sequences is phylogenetic consistency. Amplified sequences should fit into the phylogenetic framework of their supposed origin. An inherent property of aDNA sequences however, is their short sequence length. Additionally, genes for aDNA studies are often chosen by their preservation potential rather than by phylogenetically informative content. This poses potential challenges regarding their analyses, and might result in an inaccurate reflection of the supposed phylogenetic history of the sequence or organism under study. In this paper some fundamental problems of phylogenetic analysis and interpretation of aDNA datasets are discussed. Suggestions for character sampling and treatment of missing data are made. The publication is the result of a talk from the 1st PAMINSA Meeting in Rio de Janeiro, July 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swiss laboratories performing toxicological road traffic analyses have been authorized for many years by the Swiss Federal Roads Office (FEDRO). In 2003 FEDRO signed a contract with the Swiss Society of Legal Medicine (SSLM) to organize the complete quality management concerning road traffic analyses. For this purpose a multidisciplinary working group was established under the name of "road traffic commission (RTC)". RTC has to organize external quality control, to interpret the results of these controls, to perform audits in the laboratories and to report all results to FEDRO. Furthermore the working group can be mandated for special tasks by FEDRO. As an independent organization the Swiss Center for Quality Control (CSCQ) in Geneva manages the external quality controls in the laboratory over the past years. All tested drugs and psychoactive substances are listed in a federal instruction. The so-called 'zero tolerance substances' (THC, morphine, cocaine, amphetamine, methamphetamine, MDMA and MDEA) and their metabolites have to be tested once a year, all other substances (benzodiazepines, zolpidem, phenobarbital, etc.) periodically. Results over the last years show that all laboratories are generally within the confidence interval of +/-30% of the mean value. In cases of non-conformities measures have to be taken immediately and reported to the working group. External audits are performed triennially but accredited laboratories can combine this audit with the approval of the Swiss Accreditation Service (SAS). During the audits a special checklist filled in by the laboratory director is assessed. Non-conformities have to be corrected. During the process of establishing a new legislation, RTC had an opportunity of advising FEDRO. In collaboration with FEDRO, RTC and hence SSLM can work actively on improving of quality assurance in road traffic toxicological analyses, and has an opportunity to bring its professional requests to the federal authorities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary cultures were made from adult mouse spinal ganglia for depicting an ultrastructural description of rabies virus (RABV) infection in adult mouse sensory neuron cultures; they were infected with rabies virus for 24, 36, and 48 h. The monolayers were processed for transmission electron microscopy and immunochemistry studies at the end of each period. As previously reported, sensory neurons showed great susceptibility to infection by RABV; however, in none of the periods evaluated were assembled virions observed in the cytoplasm or seen to be associated with the cytoplasmic membrane. Instead, fibril matrices of aggregated ribonucleoprotein were detected in the cytoplasm. When infected culture lysate were inoculated into normal animals via intra-cerebral route it was observed that these animals developed clinical symptoms characteristic of infection and transmission electron microscopy revealed assembled virions in the cerebral cortex and other areas of the brain. Sensory neurons infected in vitro by RABV produced a large amount of unassembled viral ribonucleoprotein. However, this intracellular material was able to produce infection and virions on being intra-cerebrally inoculated. It can thus be suggested that the lack of intracellular assembly in sensory neurons forms part of an efficient dissemination strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Genetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness. RESULTS: Here, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages. CONCLUSIONS: Our results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pigments and the plasters of the Roman frescoes discovered at the House of Diana (Cosa, Grosseto, Italy) were analysed using non-destructive and destructive mineralogical and chemical techniques. The characterization of both pigments and plasters was performed through optical microscopy, scanning electron microscopy and electron microprobe analysis. The pigments were identified by Raman spectroscopy and submitted to stable isotope analysis. The results were integrated with the archaeological data in order to determine and reconstruct the provenance, trade patterns and the employment of the raw materials used for the elaboration of the frescoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are no validated criteria for the diagnosis of sensory neuronopathy (SNN) yet. In a preliminary monocenter study a set of criteria relying on clinical and electrophysiological data showed good sensitivity and specificity for a diagnosis of probable SNN. The aim of this study was to test these criteria on a French multicenter study. 210 patients with sensory neuropathies from 15 francophone reference centers for neuromuscular diseases were included in the study with an expert diagnosis of non-SNN, SNN or suspected SNN according to the investigations performed in these centers. Diagnosis was obtained independently from the set of criteria to be tested. The expert diagnosis was taken as the reference against which the proposed SNN criteria were tested. The set relied on clinical and electrophysiological data easily obtainable with routine investigations. 9/61 (16.4 %) of non-SNN patients, 23/36 (63.9 %) of suspected SNN, and 102/113 (90.3 %) of SNN patients according to the expert diagnosis were classified as SNN by the criteria. The SNN criteria tested against the expert diagnosis in the SNN and non-SNN groups had 90.3 % (102/113) sensitivity, 85.2 % (52/61) specificity, 91.9 % (102/111) positive predictive value, and 82.5 % (52/63) negative predictive value. Discordance between the expert diagnosis and the SNN criteria occurred in 20 cases. After analysis of these cases, 11 could be reallocated to a correct diagnosis in accordance with the SNN criteria. The proposed criteria may be useful for the diagnosis of probable SNN in patients with sensory neuropathy. They can be reached with simple clinical and paraclinical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome-wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome-wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single-nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10(-7)). These two SNPs were in high linkage disequilibrium (r(2) = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 x 10(-5)) was to an SNP within CDH13, whose protein product is a newly identified receptor for high-molecular-weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.