836 resultados para Semantic mapping
Resumo:
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2(nd) SRCR domain with susceptibility to MS (P max(T) permutation = 1×10(-4)). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+) naïve cells, P = 0.0001; CD8(+) naïve cells, P<0.0001; CD4(+) and CD8(+) central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+) and CD8(+) T cells.
Resumo:
Nowadays, when a user is planning a touristic route is very difficult to find out which are the best places to visit. The user has to choose considering his/her preferences due to the great quantity of information it is possible to find in the web and taking into account it is necessary to do a selection, within small time because there is a limited time to do a trip. In Itiner@ project, we aim to implement Semantic Web technology combined with Geographic Information Systems in order to offer personalized touristic routes around a region based on user preferences and time situation. Using ontologies it is possible to link, structure, share data and obtain the result more suitable for user's preferences and actual situation with less time and more precisely than without ontologies. To achieve these objectives we propose a web page combining a GIS server and a touristic ontology. As a step further, we also study how to extend this technology on mobile devices due to the raising interest and technological progress of these devices and location-based services, which allows the user to have all the route information on the hand when he/she does a touristic trip. We design a little application in order to apply the combination of GIS and Semantic Web in a mobile device.
Resumo:
Knowledge on the patterns of repetition amongst individuals who develop language deficits in association with right hemisphere lesions (crossed aphasia) is very limited. Available data indicate that repetition in some crossed aphasics experiencing phonological processing deficits is not heavily influenced by lexical-semantic variables (lexicality, imageability, and frequency) as is regularly reported in phonologically-impaired cases with left hemisphere damage. Moreover, in view of the fact that crossed aphasia is rare, information on the role of right cortical areas and white matter tracts underpinning language repetition deficits is scarce. In this study, repetition performance was assessed in two patients with crossed conduction aphasia and striatal/capsular vascular lesions encompassing the right arcuate fasciculus (AF) and inferior frontal-occipital fasciculus (IFOF), the temporal stem and the white matter underneath the supramarginal gyrus. Both patients showed lexicality effects repeating better words than non-words, but manipulation of other lexical-semantic variables exerted less influence on repetition performance. Imageability and frequency effects, production of meaning-based paraphrases during sentence repetition, or better performance on repeating novel sentences than overlearned clichés were hardly ever observed in these two patients. In one patient, diffusion tensor imaging disclosed damage to the right long direct segment of the AF and IFOF with relative sparing of the anterior indirect and posterior segments of the AF, together with fully developed left perisylvian white matter pathways. These findings suggest that striatal/capsular lesions extending into the right AF and IFOF in some individuals with right hemisphere language dominance are associated with atypical repetition patterns which might reflect reduced interactions between phonological and lexical-semantic processes.
Resumo:
Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.
Resumo:
In previous work we proposed a multi-objective traffic engineering scheme (MHDB-S model) using different distribution trees to multicast several flows. In this paper, we propose a heuristic algorithm to create multiple point-to-multipoint (p2mp) LSPs based on the optimum sub-flow values obtained with our MHDB-S model. Moreover, a general problem for supporting multicasting in MPLS networks is the lack of labels. To reduce the number of labels used, a label space reduction algorithm solution is also considered
Resumo:
Objectives. The goal of this study is to evaluate a T2-mapping sequence by: (i) measuring the reproducibility intra- and inter-observer variability in healthy volunteers in two separate scanning session with a T2 reference phantom; (2) measuring the mean T2 relaxation times by T2-mapping in infarcted myocardium in patients with subacute MI and compare it with patient's the gold standard X-ray coronary angiography and healthy volunteers results. Background. Myocardial edema is a consequence of an inflammation of the tissue, as seen in myocardial infarct (MI). It can be visualized by cardiovascular magnetic resonance (CMR) imaging using the T2 relaxation time. T2-mapping is a quantitative methodology that has the potential to address the limitation of the conventional T2-weighted (T2W) imaging. Methods. The T2-mapping protocol used for all MRI scans consisted in a radial gradient echo acquisition with a lung-liver navigator for free-breathing acquisition and affine image registration. Mid-basal short axis slices were acquired.T2-maps analyses: 2 observers semi- automatically segmented the left ventricle in 6 segments accordingly to the AHA standards. 8 healthy volunteers (age: 27 ± 4 years; 62.5% male) were scanned in 2 separate sessions. 17 patients (age : 61.9 ± 13.9 years; 82.4% male) with subacute STEMI (70.6%) and NSTEMI underwent a T2-mapping scanning session. Results. In healthy volunteers, the mean inter- and intra-observer variability over the entire short axis slice (segment 1 to 6) was 0.1 ms (95% confidence interval (CI): -0.4 to 0.5, p = 0.62) and 0.2 ms (95% CI: -2.8 to 3.2, p = 0.94, respectively. T2 relaxation time measurements with and without the correction of the phantom yielded an average difference of 3.0 ± 1.1 % and 3.1 ± 2.1 % (p = 0.828), respectively. In patients, the inter-observer variability in the entire short axis slice (S1-S6), was 0.3 ms (95% CI: -1.8 to 2.4, p = 0.85). Edema location as determined through the T2-mapping and the coronary artery occlusion as determined on X-ray coronary angiography correlated in 78.6%, but only in 60% in apical infarcts. All except one of the maximal T2 values in infarct patients were greater than the upper limit of the 95% confidence interval for normal myocardium. Conclusions. The T2-mapping methodology is accurate in detecting infarcted, i.e. edematous tissue in patients with subacute infarcts. This study further demonstrated that this T2-mapping technique is reproducible and robust enough to be used on a segmental basis for edema detection without the need of a phantom to yield a T2 correction factor. This new quantitative T2-mapping technique is promising and is likely to allow for serial follow-up studies in patients to improve our knowledge on infarct pathophysiology, on infarct healing, and for the assessment of novel treatment strategies for acute infarctions.
Resumo:
In the future, robots will enter our everyday lives to help us with various tasks.For a complete integration and cooperation with humans, these robots needto be able to acquire new skills. Sensor capabilities for navigation in real humanenvironments and intelligent interaction with humans are some of the keychallenges.Learning by demonstration systems focus on the problem of human robotinteraction, and let the human teach the robot by demonstrating the task usinghis own hands. In this thesis, we present a solution to a subproblem within thelearning by demonstration field, namely human-robot grasp mapping. Robotgrasping of objects in a home or office environment is challenging problem.Programming by demonstration systems, can give important skills for aidingthe robot in the grasping task.The thesis presents two techniques for human-robot grasp mapping, directrobot imitation from human demonstrator and intelligent grasp imitation. Inintelligent grasp mapping, the robot takes the size and shape of the object intoconsideration, while for direct mapping, only the pose of the human hand isavailable.These are evaluated in a simulated environment on several robot platforms.The results show that knowing the object shape and size for a grasping taskimproves the robot precision and performance
Resumo:
A first assessment of debris flow susceptibility at a large scale was performed along the National Road N7, Argentina. Numerous catchments are prone to debris flows and likely to endanger the road-users. A 1:50,000 susceptibility map was created. The use of a DEM (grid 30 m) associated to three complementary criteria (slope, contributing area, curvature) allowed the identification of potential source areas. The debris flow spreading was estimated using a process- and GISbased model (Flow-R) based on basic probabilistic and energy calculations. The best-fit values for the coefficient of friction and the mass-to-drag ratio of the PCM model were found to be ? = 0.02 and M/D = 180 and the resulting propagation on one of the calibration site was validated using the Coulomb friction model. The results are realistic and will be useful to determine which areas need to be prioritized for detailed studies.
Resumo:
Exploring the anatomical and functional connectivities between different regions of the brain (the "Connectome") is a core challenge in neuroscience. While robust methods are available for the adult brain, mapping the connectome in neonates is highly challenging. The purpose of this pilot study is to present a methodological approach for analyzing structural connectivity of a neonate brain and to exploit the MP2RAGE sequence with its advantageous contrast properties