990 resultados para Sea urchins.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the changes in interparticle forces brought about on prolonged contact (1 year period) of a bentonite clay with artificial seawater. The study is undertaken with the purpose of identifying the physico-chemical factors that impart a nonswelling character to smectite clays deposited in marine environments. Results show that equilibration of the bentonite clay with artificial seawater (total pore salinity approximately 42 gL-1) for a 1 year period does not lead to any mineralogical changes in the clay specimens; however, their exchangeable cation positions become prominently dominated by magnesium ions. The consistency limits of the seawater-equilibrated bentonite was determined on stepwise leaching to lower salinities. The predominance of diffuse double-layer repulsion forces in the pore salt concentration range of 42 gL-1 to 1.1 gL-1 caused an increase in the liquid limits of the seawater-equilibrated bentonite specimens on reducing the salinity in the corresponding range (42 gL-1 to 1.1 gL-1). The attraction forces, however, prevail over the repulsion forces at salt concentrations <1.1 gL-1 and cause a decrease in liquid limit of the clay specimens with reduction in pore salinity, which is typical of nonswelling clays. The attraction forces cause aggregation of the clay unit layers into domains that break down on sodium saturation of the clay specimens. It is inferred that the physico-chemical factors responsible for the nonswelling character of the seawater-equilibrated bentonite specimens at pore salt concentrations below 1.1 gL-1 are inadequate to explain the nonswelling character of smectite-rich Ariake marine clays. The lower consistency limits of the Ariake marine clays in comparison to the nonswelling character, seawater-equilibrated bentonite specimens is attributed to a relative deficiency of interparticle forces in the Ariake marine clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 mu mol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 mu mol N m(-2) d(-1) to 910 mu mol N m(-2) d(-1) and from 230 mu mol N m(-2) d(-1) to 320 mu mol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and them estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic processes were measured at a coastal deposition area in the northern Baltic Sea, covering all seasons. The N-2 production rates, 90-400 mu mol N m(-2) d(-1), were highest in autumn-early winter and lowest in spring. Heterotrophic bacterial production peaked unexpectedly late in the year, indicating that in addition to the temperature, the availability of carbon compounds suitable for the heterotrophic bacteria also plays a major role in regulating the denitrification rate. Anaerobic ammonium oxidation (anammox) was measured in spring and autumn and contributed 10% and 15%, respectively, to the total N-2 production. The low percentage did, however, result in a significant error in the total N-2 production rate estimate, calculated using the isotope pairing technique. Anammox must be taken into account in the Gulf of Finland in future sediment nitrogen cycling research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convective available potential energy (CAFE) based on monthly mean sounding has been shown to be relevant to deep convection in the tropics. The variation of CAFE with SST has been found to be similar to the variation of the frequency of deep convection at one station each in the tropical Atlantic and W. Pacific oceans. This suggests a strong link between the frequency of tropical convection and CAFE. It has been shown that CAFE so derived can be interpreted as the work potential of the atmosphere above the boundary layer with ascent in the convective region and subsidence in the surrounding cloud-free region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Recent experiments conducted over the oceanic regions adjacent to the Indian sub continent have revealed the presence of anthropogenic aerosol haze during January to March. It has been suggested that the major source of this aerosol is South and Southeast Asia. Here we show from long term, multi-station and ship borne observations that aerosols transported from regions northwest of Indian subcontinent especially Arabian and Saharan regions (mostly natural dust) along with the locally produced sea-salt aerosols by sea-surface winds constitute a more significant source of aerosols during April-May period. The radiative forcing due to Arabian/Saharan aerosols (mostly natural) during April May period is comparable and often exceed (as much as 1.5 times) the forcing due to anthropogenic aerosols during January to March period. The presence of dust load over the Arabian Sea can influence the temperature profile and radiative balance in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations from moored buoys during spring of 1998-2000 suggest that the warming of the mixed layer (similar to20 m deep) of the north Indian Ocean warm pool is a response to net surface heat flux Q(net) (similar to100 W m(-2)) minus penetrative solar radiation Q(pen) (similar to45 W m(-2)). A residual cooling due to vertical mixing and advection is indirectly estimated to be about 25 W m(-2). The rate of warming due to typical values of Q(net) minus Q(pen) is not very sensitive to the depth of the mixed layer if it lies between 10 m and 30 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian subcontinent divides the north Indian Ocean into two tropical basins, namely the Arabian Sea and the Bay of Bengal. The Arabian Sea has high salinity whereas the salinity of the Bay of Bengal is much lower due to the contrast in freshwater forcing of the two basins. The freshwater received by the Bay in large amounts during the summer monsoon through river discharge is flushed out annually by ocean circulation. After the withdrawal of the summer monsoon, the Ganga – Brahmaputra river plume flows first along the Indian coast and then around Sri Lanka into the Arabian Sea creating a low salinity pool in the southeastern Arabian Sea (SEAS). In the same region, during the pre-monsoon months of February – April, a warm pool, known as the Arabian Sea Mini Warm Pool (ASMWP), which is distinctly warmer than the rest of the Indian Ocean, takes shape. In fact, this is the warmest region in the world oceans during this period. Simulation of the river plume and its movement as well as its implications to thermodynamics has been a challenging problem for models of Indian Ocean. Here we address these issues using an ocean general circulation model – first we show that the model is capable of reproducing fresh plumes in the Bay of Bengal as well as its movement and then we use the model to determine the processes that lead to formation of the ASMWP. Hydrographic observations from the western Bay of Bengal have shown the presence of a fresh plume along the northern part of the Indian coast during summer monsoon. The Indian Ocean model when forced by realistic winds and climatological river discharge reproduces the fresh plume with reasonable accuracy. The fresh plume does not advect along the Indian coast until the end of summer monsoon. The North Bay Monsoon Current, which flows eastward in the northern Bay, separates the low salinity water from the more saline southern parts of the bay and thus plays an important role in the fresh water budget of the Bay of Bengal. The model also reproduces the surge of the fresh-plume along the Indian coast, into the Arabian Sea during northeast monsoon. Mechanisms that lead to the formation of the Arabian Sea Mini Warm Pool are investigated using several numerical experiments. Contrary to the existing theories, we find that salinity effects are not necessary for the formation of the ASMWP. The orographic effects of the Sahyadris (Western Ghats) and resulting reduction in wind speed leads to the formation of the ASMWP. During November – April, the SEAS behave as a low-wind heatdominated regime where the evolution of sea surface temperature is solely determined by atmospheric forcing. In such regions the evolution of surface layer temperature is not dependent on the characteristics of the subsurface ocean such as the barrier layer and temperature inversion.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraseasonal variations (ISV) of sea surface temperature (SST) in the Bay of Bengal (BoB) is highest in its northwestern part. An Indian Ocean model forced by QuikSCAT winds and climatological river discharge (QR run) reproduces ISV of SST, albeit with weaker magnitude. Air-sea fluxes, in the presence of a shallow mixed layer, efficiently effect intraseasonal SST fluctuations. Warming during intraseasonal events is smaller (<1°C) for June - July period and larger (1.5° to 2°C) during September, the latter due to a thinner mixed layer. To examine the effect of salinity on ISV, the model was run by artificially increasing the salinity (NORR run) and by decreasing it (MAHA10 run). In NORR, both rainfall and river discharge were switched off and in MAHA10 the discharge by river Mahanadi was increased tenfold. The spatial pattern of ISV as well as its periodicity was similar in QR, NORR and MAHA10. The ISV was stronger in NORR and weaker in MAHA10, compared to QR. In NORR, both intraseasonal warming and cooling were higher than in QR, the former due to reduced air-sea heat loss as the mean SST was lower, and the latter due to enhanced subsurface processes resulting from weaker stratification. In MAHA10, both warming and cooling were lower than in QR, the former due to higher air-sea heat loss owing to higher mean SST, and the latter due to weak subsurface processes resulting from stronger stratification. These model experiments suggest that salinity effects are crucial in determining amplitudes of intraseasonal SST variations in the BoB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25A degrees C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon.