886 resultados para Scale development
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
Coherent regulation of landscape as a resource is a major challenge. How can the development interests of some actors (eg cable car operators and property developers) be reconciled with those of others (agriculture, forestry) and with conservation of biodiversity and scenic value? To help understand how the newly introduced Regional Nature Parks (RNPs) can improve the coherence of the regulation regime in Switzerland, we highlight current direct mechanisms for regulation of landscape as a resource (bans, inventories, subsidies) as well as indirect mechanisms (taking place through the regulation of the physical basis of landscapes, eg forest, land, and water planning policies). We show that RNPs are fundamentally innovative because they make it possible to manage and coordinate indirect strategies for appropriate regulation of resources at a landscape scale. In other words, RNPs enable organization of governance of landscape as a resource in a perimeter that is not necessarily restricted to administrative boundaries.
Resumo:
This study had as its objective to analyze the intraclass reliability of the Alberta Infant Motor Scale (AIMS), in the Brazilian version, in preterm and term infants. It was a methodological study, conducted from November 2009 to April 2010, with 50 children receiving care in two public institutions in Fortaleza, Ceará, Brazil. Children were grouped according to gestational age as preterm and term, and evaluated by three evaluators in the communication laboratory of a public institution or at home. The intraclass correlation indices for the categories prone, supine, sitting and standing ranged from 0.553 to 0.952; most remained above 0.800, except for the standing category of the third evaluator, in which the index was 0.553. As for the total score and percentile, rates ranged from 0.843 to 0.954. The scale proved to be a reliable instrument for assessing gross motor performance of Brazilian children, particularly in Ceará, regardless of gestational age at birth.
Resumo:
This exploratory, descriptive, cross-sectional, and quantitative study aimed to develop and validate an index of family vulnerability to disability and dependence (FVI-DD). This study was adapted from the Family Development Index, with the addition of social and health indicators of disability and dependence. The instrument was applied to 248 families in the city of Sao Paulo, followed by exploratory factor analysis. Factor validation was performed using the concurrent and discriminant validity of the Lawton scale and Katz Index. The descriptive level adopted for the study was p < 0.05. The final vulnerability index comprised 50 questions classified into seven factors contemplating social and health dimensions, and this index exhibited good internal consistency (Cronbach’s alpha = 0.82). FVI-DD was validated using both the Lawton scale and Katz Index. We conclude that FVI-DD can accurately and reliably assess family vulnerability to disability and dependence.
Resumo:
OBJECTIVE: Prenatal diagnosis has been shown to decrease pre-operative acidosis and might prevent the occurrence of disturbed developmental outcome. The aim of this study is to evaluate parameters for acidosis and their predictive value on developmental outcome in newborns with congenital heart disease. METHODS: A total of 117 patients requiring surgery for structural heart disease in the first 31 days of life were included. Diagnosis was established either pre- or postnatally. Preoperative values of lactate, pH and base excess levels were compared to the occurrence of disturbed developmental outcome, i.e. an underperformance of more than 10% on the P90 of a standardized Dutch developmental scale. Patients were divided into groups according to blood levels of acidosis parameters, using receiver operating characteristics curves to determine cut-off values for pH, base excess and lactate. RESULTS: No significant difference in developmental outcome was found using values for pH or base excess as a cut-off level. Preoperative lactate values exceeding 6.1 mmol/l resulted in a significant increase in impaired development compared to infants with a pre-operative lactate lower than 6.1 mmol/l: 40.9% vs 15.1% in (p=0.03). CONCLUSIONS: Pre-operative lactate values might have a prognostic value on developmental outcome in newborns with congenital heart disease. The limited prognostic value of pH can be explained by the fact that pH can be easily corrected, while lactate better reflects the total oxygen debt experienced by these patients.
Resumo:
PURPOSE: Spine surgery rates are increasing worldwide. Treatment failures are often attributed to poor patient selection and inappropriate treatment, but for many spinal disorders there is little consensus on the precise indications for surgery. With an aging population, more patients with lumbar degenerative spondylolisthesis (LDS) will present for surgery. The aim of this study was to develop criteria for the appropriateness of surgery in symptomatic LDS. METHODS: A systematic review was carried out to summarize the current level of evidence for the treatment of LDS. Clinical scenarios were generated comprising combinations of signs and symptoms in LDS and other relevant variables. Based on the systematic review and their own clinical experience, twelve multidisciplinary international experts rated each scenario on a 9-point scale (1 highly inappropriate, 9 highly appropriate) with respect to performing decompression only, fusion, and instrumented fusion. Surgery for each theoretical scenario was classified as appropriate, inappropriate, or uncertain based on the median ratings and disagreement in the ratings. RESULTS: 744 hypothetical scenarios were generated; overall, surgery (of some type) was rated appropriate in 27 %, uncertain in 41 % and inappropriate in 31 %. Frank panel disagreement was low (7 % scenarios). Face validity was shown by the logical relationship between each variable's subcategories and the appropriateness ratings, e.g., no/mild disability had a mean appropriateness rating of 2.3 ± 1.5, whereas the rating for moderate disability was 5.0 ± 1.6 and for severe disability, 6.6 ± 1.6. Similarly, the average rating for no/minimal neurological abnormality was 2.3 ± 1.5, increasing to 4.3 ± 2.4 for moderate and 5.9 ± 1.7 for severe abnormality. The three variables most likely (p < 0.0001) to be components of scenarios rated "appropriate" were: severe disability, no yellow flags, and severe neurological deficit. CONCLUSION: This is the first study to report criteria for determining candidacy for surgery in LDS developed by a multidisciplinary international panel using a validated method (RAM). The panel ratings followed logical clinical rationale, indicating good face validity. The work refines clinical classification and the phenotype of degenerative spondylolisthesis. The predictive validity of the criteria should be evaluated prospectively to examine whether patients treated "appropriately" have better clinical outcomes.
Resumo:
Carbonate mylonites with varying proportions of second-phase minerals were collected at positions of increasing metamorphic grade along the basal thrust of the Morcles nappe (Helvetic nappes, Switzerland). Variations of temperature, stress, and strain rate, changes in chemistry of solid and fluid phases, and differing degrees of strain localization and annealing were tracked by measuring the shapes, mean sizes, and size distributions of both matrix and second-phase grains, as well as crystal preferred orientation (CPO) of the matrix. Field structures suggest that strain rate was constant along the fault. The mean and distribution of the calcite grain sizes were affected most profoundly by temperature: Increased temperature, presumably accompanied by decreased stress, correlated with larger mean sizes and wider size distributions. At a given location, the matrix grains in mylonites with more second-phase particles are, on average, smaller, have narrower size distributions, and have more elongate shapes. For example, mylonites with 50 vol.% of second phases have matrix grain sizes half that of pure mylonites. Changes in calcite chemistry and the presence of synkinematic fluids seemed to influence microfabric only weakly. Temporal variations in conditions, such as exhumation-induced cooling, apparently provoke changes in temperature, stress, and strain rate along the nappe. These changes result in further strain localization during retrograde conditions and cause the grain size to be reduced by an additional 50%. The matrix CPO strengthens with increasing temperature or strain, but weakens and rotates with increasing second-phase content, These fabric changes suggest differing rates of grain growth, grain size reduction, and development of CPO owing to variations in the deformation conditions and, perhaps, mechanisms. To interpret natural mylonite structures or to extrapolate mechanical data to natural situations requires careful characterization of the microfabric, and, in particular, second-phase minerals. (c) 2007 Elsevier B.V, All rights reserved.
Resumo:
We propose a model in which economic relations and institutions in advancedand less developed economies differ as these societies have access to different amounts of information. This lack of information makes it hard to give the right incentives to managers and entrepreneurs. We argue that differences in the amount of information arise because of the differences in the scale of activities in rich and poor economies; namely, there is too little repetition of similar activities in pooreconomies, thus insufficient information to set the appropriate standards for firm performance. Our model predicts a number of institutional and structural transformations as the economy accumulates capital and information.
Resumo:
A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.
Resumo:
Geological and geomorphological mapping at scale 1:10.000 besides from being an important source of scientific information it is also a necessary tool for municipal organs in order to make proper decisions when dealing with geo-environmental problems concerning integral territorial development. In this work, detailed information is given on the contents of such maps, their social and economical application, and a balance of the investment and gains that derives from them
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.
Resumo:
Abstract Empirical testing of candidate vaccines has led to the successful development of a number of lifesaving vaccines. The advent of new tools to manipulate antigens and new methods and vectors for vaccine delivery has led to a veritable explosion of potential vaccine designs. As a result, selection of candidate vaccines suitable for large-scale efficacy testing has become more challenging. This is especially true for diseases such as dengue, HIV, and tuberculosis where there is no validated animal model or correlate of immune protection. Establishing guidelines for the selection of vaccine candidates for advanced testing has become a necessity. A number of factors could be considered in making these decisions, including, for example, safety in animal and human studies, immune profile, protection in animal studies, production processes with product quality and stability, availability of resources, and estimated cost of goods. The "immune space template" proposed here provides a standardized approach by which the quality, level, and durability of immune responses elicited in early human trials by a candidate vaccine can be described. The immune response profile will demonstrate if and how the candidate is unique relative to other candidates, especially those that have preceded it into efficacy testing and, thus, what new information concerning potential immune correlates could be learned from an efficacy trial. A thorough characterization of immune responses should also provide insight into a developer's rationale for the vaccine's proposed mechanism of action. HIV vaccine researchers plan to include this general approach in up-selecting candidates for the next large efficacy trial. This "immune space" approach may also be applicable to other vaccine development endeavors where correlates of vaccine-induced immune protection remain unknown.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.