939 resultados para Salts in soils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under defined laboratory and field conditions, the investigation of percolating water through soil columns (podsol, lessive and peat) down to groundwater table shows that the main factors which control the chemical characteristics of the percolates are: precipitation, evaporation, infiltration rate, soil type, depth and dissolved organic substances. Evaporation and percolation velocity influences the Na+, SO4**2- and Cl- concentrations. Low percolation velocity leads also to longer percolation times and water logging in less permeable strata, which results in lower Eh-values and higher CO2-concentrations due to low gas exchange with the atmosphere. Ca2+ and Mg2+ carbonate concentration depends on soil type and depth. Metamorphism and decomposition of organic substances involve NO3 reduction and K+, Mg2+, SO4**2-, CO2, Fe2+,3+ transport. The analytical data were evaluated with multi variate statistical methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Centennial deposit is a high grade (~8% U3O8), deeply buried (~950m), unconformity-related U deposit located in the south-central region of the Athabasca Basin in northern Saskatchewan, Canada. The mineral chemistry of fine fractions (<63 μm) of soils from grids above the Centennial deposit were examined to understand possible controls on the geochemistry and radiogenic 207Pb/206Pb ratios measured in the clay-size (<2 μm) fractions used for exploration. Soil samples distal and proximal to the deposit projection to the surface and geophysically defined structures were selected. Mineral abundances were determined using the scanning electron microscope and Mineral Liberation Analysis. Zircon was the only U-rich mineral identified with modal abundances >0.02% by weight. Monazite, which can be U-rich, was identified, but not in significant abundances. The source of the zircon and other heavy minerals is interpreted to be from sub-cropping sources that are >100 km up-ice from Centennial. Trace element analysis using laser ablation inductively coupled plasma mass spectrometry of hydroseparated zircon grains indicate that zircon abundances and zircon Pb concentrations in surficial samples have minimal effect on the radiogenic 207Pb/206Pb ratios in the clay-fraction of the samples, with the dominant source of radiogenic Pb being clay mineral surfaces that trapped Pb during secondary dispersion from the Centennial uranium deposit through faults and fractures to the surface. The REE patterns indicate HREE enrichment in the clay-fractions of samples that have higher abundances of zircon in the <20 μm fraction. Immobile elements such as HREE that are concentrated in zircon can be used as indicators of radiogenic Pb being sourced from minerals at the surface rather than being sourced from secondary dispersion from deeply buried U deposits.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common use of phosphate fertilizers NPK and amendments in sugar cane crops in Brazilian agriculture may increase the Ra-226, Th-232 and K-40 activity concentrations in soils and their availability for plants and human food chain. Thus, the main aim of this study was to evaluate the distribution of Ra-226, Th-232 and K-40 in soils and sugar cane crops in the Corumbatai river basin, São Paulo State, Brazil. The gamma spectrometry was utilized to measure the Ra-226, Th-232 and K-40 activity concentration in all samples. The soil-to-sugar cane transfer factors (TF) were quantified using the ratio between the radionuclide activity concentration in sugar cane and its activity concentration in soil. The results show that, although radionuclides incorporated in phosphate fertilizers and amendments are annually added in the sugar cane crops, if utilized in accordance with the recommended rates, their use does not lead to hazards levels in soils. The soil-to-sugar cane transfer of radionuclides occurred in the following order K-40 > Ra-226 > Th-232. Therefore, under these conditions, radionuclides intake through consumption of sugar is not hazardous to human health. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vast montado areas are threatened by degradation, as the result of a long history of land use changes. Since improved pastures have been installed aiming soil quality improvement and system sustainability, it is crucial to evaluate the effects of these management changes on soil organic matter status and soil biological activity, as soil quality indicators. Therefore, a 35-yr old improved pasture and a natural pasture were studied, considering areas beneath tree canopy and in the open. Total organic C, total N, hot water soluble (HWS) and particulate (POM) C, microbial biomass C (MBC) and N (MBN), C mineralization rate (CMR) and net N mineralization rate (NMR) were determined. In addition, for a 1-yr period, soil β-glucosidase, urease, proteases and acid phosphomonoesterase were periodically determined. Improved pasture promoted the increase of soil C and N through POM-C increment, particularly beneath the trees canopies. The two study pastures did not show differences regarding soil microbial biomass, but variations in CMR, HWS-C and N availability (proteases and urease activities) suggest divergent soil microbial communities. Tree regulator role on C, N and P transformation processes in soil was confirmed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoremediation studies have been conducted in an area contaminated by heavy metals, located in Piracicaba - SP, Brazil. This area was contaminated accidentally by the addition of auto scrap shredding to the soil and was limed later to reduce heavy metal mobility in the environment. Previous characterization showed that it also presents high concentration of boron, which has limited the initial plant development of some species. As sunflower plants require a high boron supply and the literature describes its use in the phytoremediation of soils contaminated with heavy metals under some conditions, the aim of this work was to evaluate its potential for the remediation of this area. In the present study, the results of preliminary tests are presented, aiming at the evaluation of sunflower plant germination and its initial development when cultivated in the contaminated soil described. Two sunflower hybrids were sown in soils treated with different rates of boron and in the soil from the contaminated area in study. The results showed that sunflower plants had a normal initial development, even in the soil from the contaminated area. Therefore, sunflower is a promising crop and further studies will be developed to evaluate the sunflower efficiency in phytoextraction or phytostabilization of heavy metals in areas where boron contamination also occurs, as is the case in the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A área brasileira plantada com milho geneticamente modificado (GM) expressando genes Cry derivados da bactéria do solo Bacillus thuringiensis (Bt) aumentou de 4,9% (5,0 milhões de hectares) da área total plantada em 2009 para 81,4% (15,83 milhões de hectares) em 2014. No entanto, estudos sobre os efeitos da tecnologia Bt-milho sobre microrganismos não alvo em solos tropicais são incipientes. Dessa forma, foi realizado experimento de campo para avaliar a atividade fisiológica das comunidades bacterianas associadas com genótipos de milho Bt plantados em Latossolo Vermelho Escuro do Cerrado e solos hidromórficos da planície com inundações localizadas. Um híbrido não transgênico (30F35) e seus homólogos transgênicos 30F35Y (Cry1Ab) e 30F35H (Cry1F) foram plantados com delineamento de blocos casualizados com quatro repetições. Solos rizosféricos e não rizosféricos coletados de plantas no estádio de florescimento foram submetidos aos ensaios de diversidade metabólica com Biolog e atividades enzimáticas de urease, arginase, fosfatase ácida e fosfatase alcalina. Solos rizosféricos apresentaram maior atividade microbiana e não foram detectadas diferenças significativas entre os genótipos em todos os parâmetros bioquímicos e de solo avaliados. Os resultados sugerem que o milho Bt não afeta negativamente a comunidade microbiana dos solos tropicais.