912 resultados para Sales forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process management refers to improving the key functions of a company. The main functions of the case company - project management, procurement, finance, and human resource - use their own separate systems. The case company is in the process of changing its software. Different functions will use the same system in the future. This software change causes changes in some of the company’s processes. Project cash flow forecasting process is one of the changing processes. Cash flow forecasting ensures the sufficiency of money and prepares for possible changes in the future. This will help to ensure the company’s viability. The purpose of the research is to describe a new project cash flow forecasting process. In addition, the aim is to analyze the impacts of the process change, with regard to the project control department’s workload and resources through the process measurement, and how the impacts take the department’s future operations into account. The research is based on process management. Processes, their descriptions, and the way the process management uses the information, are discussed in the theory part of this research. The theory part is based on literature and articles. Project cash flow and forecasting-related benefits are also discussed. After this, the project cash flow forecasting as-is and to-be processes are described by utilizing information, obtained from the theoretical part, as well as the know-how of the project control department’s personnel. Written descriptions and cross-functional flowcharts are used for descriptions. Process measurement is based on interviews with the personnel – mainly cost controllers and department managers. The process change and the integration of two processes will allow work time for other things, for example, analysis of costs. In addition to the quality of the cash flow information will improve compared to the as-is process. Analyzing the department’s other main processes, department’s roles, and their responsibilities should be checked and redesigned. This way, there will be an opportunity to achieve the best possible efficiency and cost savings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.