655 resultados para SHELLY FOSSILS
Resumo:
Although the basic morphology of the Ediacaran metazoan Corumbella werneri (the type species of the genus) is well established, little is known about its skeletal tissue. Carbonaceous fragments of this fossil from the Itapucumi Group (Paraguay) reveal details of the ultrastructure of its carapace, providing an unprecedented opportunity to understand a paradigmatic issue of the evolution of skeletogenesis in early metazoans. Corumbella was a sessile predator whose carapace consisted of organic polygonal plates with pores and papillae similar to features observed in some conulariids. Its occurrence with the shelly fossil Cloudina suggests that the acquisition of protective structures in metazoans involved penecontemporaneous processes of biomineralization and secretion of organic walls.
Resumo:
Universidad de Las Palmas de Gran Canaria. Departamento de Biología. Programa de doctorado de Gestión de recursos vivos marinos y medioambiente ; bienio 2006-2008
Resumo:
[EN] Numerous specimens of fossil brachiopods have been found in the different fossiliferous outcrops of the Canary Islands. These fossils have been found in the deposits of Mio-Pliocene age of the eastern Canary Islands, described and illustrated in the work of Meco et ali. 2005 and in the outcrops interpreted as a tsunami deposits in Piedra Alta, Lanzarote, belonging to the Marine Isotope Stage 11 dated to circa 330 ka. 4 species of fossil brachiopods have been identificated: Terebratula sinuous Brocchi 1814, Lacazella mediterranea Risso 1826 Terebratulina caputserpentis (Zbyszewski, 1957) and Thecidium cf . digitatum (Sowerby 1823). These fossils provides stratigraphic and paleoclimatic taxonomic information. Furthermore, in order to compare the fossil brachiopods with present in the Canary Island, a reference collection is defined with specimens obtained from marine sediment surveys at Gran Canaria, La Palma and El Hierro, identifying 3 species: Argyrotheca barrettiatia (Davidson, 1866), Megerlia truncata (Linaeus 1767 ) and Pajaudina atlantica (Logan 1988).
Resumo:
[EN] The last 5 Myr are characterized by cliamatic variations globally and are reflected in ancient fossiliferous marine deposits visible in the Canary Islands. The fossils contained are identificated as paleoecological and paleoclimatic indicators. The Mio-Pliocene Transit is represented by the coral Siderastrea micoenica Osasco, 1897; the gastropods Rothpletzia rudista Simonelli, 1890; Ancilla glandiformis (Lamarck, 1822); Strombus coronatus Defrance, 1827 and Nerita emiliana Mayer, 1872 and the bivalve Gryphaea virleti Deshayes, 1832 as most characteristic fossils and typical of a very warm climate and littoral zone. Associated lava flows have been dated radiometrically and provides a range between 8.9 and about 4.2 Kyr. In the mid-Pleistocene, about 400,000 years ago, the called Marine Isotope Stage 11, a strong global warming that caused a sea level rise happens. Remains of the MIS 11 are preserved on the coast of Arucas (Gran Canaria), and associated with a tsunami in Piedra Alta (Lanzarote). These fossilifeorus deposits contains the bivalve Saccostrea cucullata (Born, 1780), the gastropod Purpurellus gambiensis (Reeve, 1845) and the corals Madracis pharensis (Heller, 1868) and Dendrophyllia cornigera (Lamarck, 1816). Both sites have been dated by K-Ar on pillow lavas (approximately 420,000 years) and by Uranium Series on corals (about 481,000 years) respectively. The upper Pleistocene starts with another strong global warming known as the last interglacial or marine isotope stage (MIS) 5.5, about 125,000 years ago, which also left marine fossil deposits exposed in parallel to current in Igueste of San Andrés (Tenerife), El Altillo, the city of Las Palmas de Gran Canaria and Maspalomas (Gran Canaria), Matas Blancas, the Playitas and Morrojable (Fuerteventura ) and in Playa Blanca and Punta Penedo (Lanzarote ). The fossil coral Siderastrea radians (Pallas , 1766 ) currently living in the Cape Verde Islands , the Gulf of Guinea and the Caribbean has allowed Uranium series dating. The gastropods Strombus bubonius Lamarck, 1822 and Harpa doris (Röding , 1798 ) currently living in the Gulf of Guinea. Current biogeography using synoptic data obtained through satellites provided by the ISS Canary Seas provides data of Ocean Surface Temperature (SST) and Chlorophyll a (Chlor a) . This has allowed the estimation of these sea conditions during interglacials compared to today .
Resumo:
The subject of this doctoral dissertation concerns the definition of a new methodology for the morphological and morphometric study of fossilized human teeth, and therefore strives to provide a contribution to the reconstruction of human evolutionary history that proposes to extend to the different species of hominid fossils. Standardized investigative methodologies are lacking both regarding the orientation of teeth subject to study and in the analysis that can be carried out on these teeth once they are oriented. The opportunity to standardize a primary analysis methodology is furnished by the study of certain early Neanderthal and preneanderthal molars recovered in two caves in southern Italy [Grotta Taddeo (Taddeo Cave) and Grotta del Poggio (Poggio Cave), near Marina di Camerata, Campania]. To these we can add other molars of Neanderthal and modern man of the upper Paleolithic era, specifically scanned in the paleoanthropology laboratory of the University of Arkansas (Fayetteville, Arkansas, USA), in order to increase the paleoanthropological sample data and thereby make the final results of the analyses more significant. The new analysis methodology is rendered as follows: 1. Standardization of an orientation system for primary molars (superior and inferior), starting from a scan of a sample of 30 molars belonging to modern man (15 M1 inferior and 15 M1 superior), the definition of landmarks, the comparison of various systems and the choice of a system of orientation for each of the two dental typologies. 2. The definition of an analysis procedure that considers only the first 4 millimeters of the dental crown starting from the collar: 5 sections parallel to the plane according to which the tooth has been oriented are carried out, spaced 1 millimeter between them. The intention is to determine a method that allows for the differentiation of fossilized species even in the presence of worn teeth. 3. Results and Conclusions. The new approach to the study of teeth provides a considerable quantity of information that can better be evaluated by increasing the fossil sample data. It has been demonstrated to be a valid tool in evolutionary classification that has allowed (us) to differentiate the Neanderthal sample from that of modern man. In a particular sense the molars of Grotta Taddeo, which up until this point it has not been possible to determine with exactness their species of origin, through the present research they are classified as Neanderthal.
Resumo:
Es wurde ein Teil der life-history, die Reproduktion, von Dinosauriern, speziell der Sauropoden, den größten bekannten jemals auf der Erde existierenden Landtieren, untersucht, um unter anderem den Zusammenhang zwischen Gigantismus und Reproduktion zu erforschen. Hierzu wurde eine mögliche life-history für Sauropoden, auf Grundlage des heutigen Forschungsstands in der Biologie und der Paläontologie, anhand einer Literaturrecherche erstellt. Des Weiteren wurde ein Modell zur Reproduktion bei ausgestorbenen oviparen Amnioten, basierend auf bestehenden Zusammenhängen zwischen Körpergröße und verschiedenen masse-spezifischen Reproduktionsmerkmalen (Eigewicht, Gelegegewicht, jähr. Gelegegewicht) bei rezenten oviparen Amnioten, erarbeitet. Mit Hilfe dieses Modells und Informationen aus Fossilfunden wurde der Frage nachgegangen, wie diese Reproduktionsmerkmale bei Dinosauriern wahrscheinlich ausgesehen haben. Weiterhin erfolgte die Überprüfung der Hypothese, dass Dinosaurier, insbesondere Sauropoden, eine höhere Reproduktionskapazität hatten als gleich große landlebende Säugetiere, was ersteren im Vergleich zu letzteren ermöglicht haben soll so viel größer zu werden (Janis und Carrano 1992). rnDie Untersuchungen der Zusammenhänge zwischen Körpergewicht und den masse-spezifischen Reproduktionsmerkmalen ergaben, dass das Körpergewicht immer stark mit den untersuchten Reproduktionsmerkmalen korreliert war. Große Vögel und große Reptilien unterscheiden sich in ihrem relativen Eigewicht (Eigewicht/Körpergewicht). Vögel haben relativ größere Eier. Betrachtet man das relative Gelegegewicht oder das relative jährliche Gelegegewicht so wird der Unterschied kleiner bzw. ist zwischen manchen Reptilien- und Vogelgruppen nicht mehr vorhanden. Dinosaurier hatten relative Eigewichte, die zwischen denen von Reptilien und Vögel liegen. Basale Dinosaurier, wie Prosauropoden, waren in ihrer Reproduktion eher reptilien-ähnlich, während vogel-ähnliche Theropoden eine Reproduktion hatten, die sich besser durch ein Vogelmodel beschreiben lässt. Die Reproduktion anderer Dinosaurier, wie Sauropoden und Hadrosaurier, lässt sich nicht eindeutig durch eines der beiden Modelle beschreiben und/oder die Modelle variierten in Abhängigkeit des betrachteten Merkmals. Trotzdem war es möglich für alle untersuchten Dinosaurier eine Abschätzung zur Gelegegröße und der Anzahl der jährlich gelegten Eier zu machen. Diese Schätzungen ergaben, dass die vermutete hohe Reproduktionskapazität von mehreren hundert Eiern pro Jahr nur für extrem große Sauropoden (70 t) haltbar ist. rnMit Ausnahme der Nagetiere fand ich die Unterschiede in der Reproduktionskapazität von Vögeln und Säugetieren, die Janis und Carrano (1992) postulierten, sogar auf der Ebene von Ordnungen. Dinosauriergelege waren größer als die Würfe von gleichgroßen (extrapolierten) Säugetieren während die Gelegegröße von gleichgroßen (extrapolierten) Vögeln ähnlich der von Sauropoden war. Da das Aussterberisiko häufig mit niedriger Reproduktionskapazität korreliert ist, impliziert dies ein geringeres Aussterberisiko großer Dinosaurier im Vergleich zu großen Säugetieren. Populationen sehr großer Dinosaurier, wie der Sauropoden, konnten vermutlich daher, über evolutionäre Zeiträume betrachtet, sehr viel länger existieren als Populationen großer Säugetiere.rn
Resumo:
In 2011 the GSB/USB caving group of Bologna has discovered, in the southern fossil branches of Govjestica cave (Valle di Praça, Bosnia) a fossil deposit of vertebrates containing bones of Ursus spelaeus, Capra ibex, Cricetulus migratorius and Microtus. On the basis of the U/Th ages of the bones, teeth and carbonate flowstone covering the fossils (60 ka), datings carried out in the laboratories of U-Series at Bologna, and on the disposition of the bones, a past connection between Govjestica and the nearby Banja Stjena cave is hypothesised. The closure of this passage has occurred suddenly through a collapse that has forced the last cave bears awakened from their winter sleep to stay blocked in Govjestica, and die. The connecting passage has later been covered with calcite flowstones and is no longer visible. This hypothesis is sustained by the rather scarce number of skeletons of cave bears found in Govjestica (a dozen of skulls against the often large amounts of cave bears found in similar caves): Govjestica cave, and especially the Room of the Bones in its southern part, has been used by cave bears only for a couple of centuries before these parts became inaccessible. Furthermore, the entrance of Banja Stjena cave was probably located close to or at the level of the Praça river, that has excavated its thalweg for around 20 metres in the last 60 ka.
Resumo:
Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.
Resumo:
Aim Parrots are thought to have originated on Gondwana during the Cretaceous. The initial split within crown group parrots separated the New Zealand taxa from the remaining extant species and was considered to coincide with the separation of New Zealand from Gondwana 82-85 Ma, assuming that the diversification of parrots was mainly shaped by vicariance. However, the distribution patterns of several extant parrot groups cannot be explained without invoking transoceanic dispersal, challenging this assumption. Here, we present a temporal and spatial framework for the diversification of parrots using external avian fossils as calibration points in order to evaluate the relative importance of the influences of past climate change, plate tectonics and ecological opportunity. Location Australasian, African, Indo-Malayan and Neotropical regions. Methods Phylogenetic relationships were investigated using partial sequences of the nuclear genes c-mos, RAG-1 and Zenk of 75 parrot and 21 other avian taxa. Divergence dates and confidence intervals were estimated using a Bayesian relaxed molecular clock approach. Biogeographic patterns were evaluated taking temporal connectivity between areas into account. We tested whether diversification remained constant over time and if some parrot groups were more species-rich than expected given their age. Results Crown group diversification of parrots started only about 58 Ma, in the Palaeogene, significantly later than previously thought. The Australasian lories and possibly also the Neotropical Arini were found to be unexpectedly species-rich. Diversification rates probably increased around the Eocene/Oligocene boundary and in the middle Miocene, during two periods of major global climatic aberrations characterized by global cooling. Main conclusions The diversification of parrots was shaped by climatic and geological events as well as by key innovations. Initial vicariance events caused by continental break-up were followed by transoceanic dispersal and local radiations. Habitat shifts caused by climate change and mountain orogenesis may have acted as a catalyst to the diversification by providing new ecological opportunities and challenges as well as by causing isolation as a result of habitat fragmentation. The lories constitute the only highly nectarivorous parrot clade, and their diet shift, associated with morphological innovation, may have acted as an evolutionary key innovation, allowing them to explore underutilized niches and promoting their diversification.
Resumo:
Paleogene sedimentary rocks of the Arkose Ridge Formation (Talkeetna Mountains, Alaska) preserve a record of a fluvial-lacustrine depositional environment and its forested ecosystem in an active basin among the convergent margin tectonic processes that shaped southern Alaska. An -800 m measured succession at Box Canyon indicates braid-plain deposition with predominantly gravelly deposits low in the exposure to sandy and muddy facies associations below an overlying lava flow sequence. U-Pb geochronology on zircons from a tuff and a sandstone within the measured section, as well as an Ar/Ar date from the overlying lava constrain the age of the sedimentary succession to between similar to 59 Ma and 48 Ma Fossil plant remains occur throughout the Arkose Ridge Formation as poorly-preserved coalified woody debris and fragmentary leaf impressions. At Box Canyon, however, a thin la-custrine depositional lens of rhythmically laminated mudrocks yielded fish fossils and a well-preserved floral assemblage including foliage and reproductive organs representing conifers, sphenopsids, monocots, and dicots. Leaf physiognomic methods to estimate paleoclimate were applied to the dicot leaf collection and indicate warm temperate paleotemperatures (-11-15 +/- -4 degrees C MAT) and elevated paleoprecipitation (-120 cm/yr MAP) estimates as compared to modem conditions; results that are parallel with previously published estimates from the partly coeval Chickaloon Formation deposited in more distal depositional environments in the same basin. The low abundance of leaf herbivory in the Box Canyon dicot assemblage (-9% of leaves damaged) is also similar to the results from assemblages in the meander-plain depositional systems of the Chickaloon. This new suite of data informs models of the tectonostratigraphic evolution of southern Alaska and the developing understanding of terrestrial paleoecology and paleoclimate at high latitudes during the Late Paleocene-Early Eocene greenhouse climate phase. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fossils of chironomid larvae (non-biting midges) preserved in lake sediments are well-established palaeotemperature indicators which, with the aid of numerical chironomid-based inference models (transfer functions), can provide quantitative estimates of past temperature change. This approach to temperature reconstruction relies on the strong relationship between air and lake surface water temperature and the distribution of individual chironomid taxa (species, species groups, genera) that has been observed in different climate regions (arctic, subarctic, temperate and tropical) in both the Northern and Southern hemisphere. A major complicating factor for the use of chironomids for palaeoclimate reconstruction which increases the uncertainty associated with chironomid-based temperature estimates is that the exact nature of the mechanism responsible for the strong relationship between temperature and chironomid assemblages in lakes remains uncertain. While a number of authors have provided state of the art overviews of fossil chironomid palaeoecology and the use of chironomids for temperature reconstruction, few have focused on examining the ecological basis for this approach. Here, we review the nature of the relationship between chironomids and temperature based on the available ecological evidence. After discussing many of the surveys describing the distribution of chironomid taxa in lake surface sediments in relation to temperature, we also examine evidence from laboratory and field studies exploring the effects of temperature on chironomid physiology, life cycles and behaviour. We show that, even though a direct influence of water temperature on chironomid development, growth and survival is well described, chironomid palaeoclimatology is presently faced with the paradoxical situation that the relationship between chironomid distribution and temperature seems strongest in relatively deep, thermally stratified lakes in temperate and subarctic regions in which the benthic chironomid fauna lives largely decoupled from the direct influence of air and surface water temperature. This finding suggests that indirect effects of temperature on physical and chemical characteristics of lakes play an important role in determining the distribution of lake-living chironomid larvae. However, we also demonstrate that no single indirect mechanism has been identified that can explain the strong relationship between chironomid distribution and temperature in all regions and datasets presently available. This observation contrasts with the previously published hypothesis that climatic effects on lake nutrient status and productivity may be largely responsible for the apparent correlation between chironomid assemblage distribution and temperature. We conclude our review by summarizing the implications of our findings for chironomid-based palaeoclimatology and by pointing towards further avenues of research necessary to improve our mechanistic understanding of the chironomid-temperature relationship.
Resumo:
Format: 5 minute introduction, 15 min per speaker, 70 minute discussion Moderator: Shelly Tenenbaum, Clark University
Resumo:
Timing divergence events allow us to infer the conditions under which biodiversity has evolved and gain important insights into the mechanisms driving evolution. Cichlid fishes are a model system for studying speciation and adaptive radiation, yet, we have lacked reliable timescales for their evolution. Phylogenetic reconstructions are consistent with cichlid origins prior to Gondwanan landmass fragmentation 121-165 MYA, considerably earlier than the first known fossil cichlids (Eocene). We examined the timing of cichlid evolution using a relaxed molecular clock calibrated with geological estimates for the ages of 1) Gondwanan fragmentation and 2) cichlid fossils. Timescales of cichlid evolution derived from fossil-dated phylogenies of other bony fishes most closely matched those suggested by Gondwanan breakup calibrations, suggesting the Eocene origins and marine dispersal implied by the cichlid fossil record may be due to its incompleteness. Using Gondwanan calibrations, we found accumulation of genetic diversity within the radiating lineages of the African Lakes Malawi, Victoria and Barombi Mbo, and Palaeolake Makgadikgadi began around or after the time of lake basin formation. These calibrations also suggest Lake Tanganyika was colonized independently by the major radiating cichlid tribes that then began to accumulate genetic diversity thereafter. These results contrast with the widely accepted theory that diversification into major lineages took place within the Tanganyika basin. Together, this evidence suggests that ancient lake habitats have played a key role in generating and maintaining diversity within radiating lineages and also that lakes may have captured preexisting cichlid diversity from multiple sources from which adaptive radiations have evolved.
Resumo:
This paper marks an increased refinement and more detailed accuracy in the description of the geological features of the state. It includes the recent studies of mineral deposits, of oil structures, of the formations of bedded rocks and their included fossils, carried on both by the Federal and State governments and by various interested private persons, such as the mining companies. It is within this period that the Federal Government encouraged the U. S. Geological Survey in the publication of monographs on the National Parks, papers of great popular interest and educational value making these beautiful regions comprehensible in their geological features to the touring public.