990 resultados para SEMICONDUCTOR MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, Cu 2O spheres were prepared and encapsulated with reduced graphene oxide (rGO). The Cu 2O–rGO–C3N4 composite covered the whole solar spectrum with significant absorption intensity. rGO wrapped Cu 2O loading caused a red shift in the absorption with respect to considering the absorption of bare C3N4. The photoluminescence study confirms that rGO exploited as an electron transport layer at the interface of Cu 2O and C3N4 heterojunction. Utmost, ∼2 fold synergistic effect was achieved with Cu 2O–rGO–C3N4 for the photocatalytic reduction of 4-nitrophenol to 4-aminophenol in comparison with Cu 2O–rGO and C3N4. The Cu 2O–rGO–C3N4 photocatalyst was reused for four times without loss in its activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs), which can efficiently transport both holes and electrons, using a single type of electrode, are currently of great interest due to their possible applications in complementary metal oxide semiconductor (CMOS)-like circuits, sensors, and in light-emitting transistors. Several theoretical and experimental studies have argued that most organic semiconductors should be able to transport both types of carrier, although typically unipolar behavior is observed. One factor that can compromise ambipolar transport in organic semiconductors is poor solid state overlap between the HOMO (p-type) or LUMO (n-type) orbitals of neighboring molecules in the semiconductor thin film. In the search of low-bandgap ambipolar materials, where the absence of skeletal distortions allows closer intermolecular π-π stacking and enhanced intramolecular π-conjugation, a new family of oligothiophene-naphthalimide assemblies have been synthesized and characterized, in which both donor and acceptor moieties are directly conjugated through rigid linkers. In previous works we found that oligothiophene-napthalimide assemblies connected through amidine linkers (NDI derivates) exhibit skeletal distortions (50-60º) arising from steric hindrance between the carbonyl group of the arylene core and the sulphur atom of the neighbored thiophene ring (see Figure 1). In the present work we report novel oligo- and polythiophene–naphthalimide analogues NAI-3T, NAI-5T and poly-NAI-8C-3T, in which the connections of the amidine linkage have been inverted in order to prevent steric interactions. Thus, the nitrogen atoms are directly connected to the naphthalene moiety in NAI derivatives while they were attached directly to the thiophene moiety in the previously investigated NDI-3T and NDI-5T. In Figure 1 is depicted the calculated molecular structure of NAI-3T together with that of NDI-3T showing how the steric interactions are not present in the novel NAI derivative. The planar skeletons in these new family induce higher degree of crystallinity and the carrier charge transport can be switched from n-type to ambipolar behaviour. The highest FET performance is achieved for vapor-deposited films of NAI-3T with mobilities of 1.95x10-4cm2V-1s-1 and 2.00x10-4cm2V-1s-1 for electrons and holes, respectively. Finally, these planar semiconductors are compared with their NDI derivates analogues, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.