990 resultados para SCALAR FIELD-EQUATIONS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analogue of the Newton-Wigner position operator is defined for a massive neutral scalar field in de Sitter space. The one-particle subspace of the theory, consisting of positive-energy solutions of the Klein-Gordon equation selected by the Hadamard condition, is identified with an irreducible representation of the de Sitter group. Postulates of localizability analogous to those written by Wightman for fields in Minkowski space are formulated on it, and a unique solution is shown to exist. Representations in both the principal and the complementary series are considered. A simple expression for the time evolution of the Newton-Wigner operator is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a locally compact Hausdorff space K and a Banach space X we denote by C-0(K, X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Gamma an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C-0(Gamma, X) and C-0(K, X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur distance between C-0(N, X) and C([1, omega(n)k], X) is exactly 2n + 1, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where n = 1 and X is the scalar field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological beta parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time, but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the value of beta. In the radiation case, a trapped surface is formed for beta <= 1/2, whereas for beta >= 1/2, a naked singularity is developed. In general, the critical value is beta = 1-2/3(1 + omega) where omega is the parameter describing the equation of state of the fluid component.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we investigate the influence of dark energy on structure formation, within five different cosmological models, namely a concordance $\Lambda$CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessence models (EQp and EQn) where the quintessence scalar field interacts non-minimally with gravity (scalar-tensor theories). We adopted for all models the normalization of the matter power spectrum $\sigma_{8}$ to match the CMB data. For each model, we perform hydrodynamical simulations in a cosmological box of $(300 \ {\rm{Mpc}} \ h^{-1})^{3}$ including baryons and allowing for cooling and star formation. We find that, in models with dynamical dark energy, the evolving cosmological background leads to different star formation rates and different formation histories of galaxy clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies for the cluster mass function based on X-ray observables like temperature, luminosity, $M_{gas}$, and $Y_{X}$. We confirm that the overall baryon fraction is almost independent of the dark energy models within few percentage points. The same is true for the gas fraction. This evidence reinforces the use of galaxy clusters as cosmological probe of the matter and energy content of the Universe. We also study the $c-M$ relation in the different cosmological scenarios, using both dark matter only and hydrodynamical simulations. We find that the normalization of the $c-M$ relation is directly linked to $\sigma_{8}$ and the evolution of the density perturbations for $\Lambda$CDM, RP and SUGRA, while for EQp and EQn it depends also on the evolution of the linear density contrast. These differences in the $c-M$ relation provide another way to use galaxy clusters to constrain the underlying cosmology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last decade has witnessed the establishment of a Standard Cosmological Model, which is based on two fundamental assumptions: the first one is the existence of a new non relativistic kind of particles, i. e. the Dark Matter (DM) that provides the potential wells in which structures create, while the second one is presence of the Dark Energy (DE), the simplest form of which is represented by the Cosmological Constant Λ, that sources the acceleration in the expansion of our Universe. These two features are summarized by the acronym ΛCDM, which is an abbreviation used to refer to the present Standard Cosmological Model. Although the Standard Cosmological Model shows a remarkably successful agreement with most of the available observations, it presents some longstanding unsolved problems. A possible way to solve these problems is represented by the introduction of a dynamical Dark Energy, in the form of the scalar field ϕ. In the coupled DE models, the scalar field ϕ features a direct interaction with matter in different regimes. Cosmic voids are large under-dense regions in the Universe devoided of matter. Being nearby empty of matter their dynamics is supposed to be dominated by DE, to the nature of which the properties of cosmic voids should be very sensitive. This thesis work is devoted to the statistical and geometrical analysis of cosmic voids in large N-body simulations of structure formation in the context of alternative competing cosmological models. In particular we used the ZOBOV code (see ref. Neyrinck 2008), a publicly available void finder algorithm, to identify voids in the Halos catalogues extraxted from CoDECS simulations (see ref. Baldi 2012 ). The CoDECS are the largest N-body simulations to date of interacting Dark Energy (DE) models. We identify suitable criteria to produce voids catalogues with the aim of comparing the properties of these objects in interacting DE scenarios to the standard ΛCDM model, at different redshifts. This thesis work is organized as follows: in chapter 1, the Standard Cosmological Model as well as the main properties of cosmic voids are intro- duced. In chapter 2, we will present the scalar field scenario. In chapter 3 the tools, the methods and the criteria by which a voids catalogue is created are described while in chapter 4 we discuss the statistical properties of cosmic voids included in our catalogues. In chapter 5 the geometrical properties of the catalogued cosmic voids are presented by means of their stacked profiles. In chapter 6 we summarized our results and we propose further developments of this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work a Bianchi type II space-time within the framework of projectable Horava Lifshitz gravity was investigated; the resulting field equations in the infrared limit λ = 1 were analyzed qualitatively. We have found the analytical solutions for a toy model in which only the higher curvature terms cubic in the spatial Ricci tensor are considered. The resulting behavior is still described by a transition among two Kasner epochs, but we have found a different transformation law of the Kasner exponents with respect to the one of Einstein's general relativity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We revisit the supermultiplet structure of Noether currents for N=1 supersymmetric gauge theories. Using superfield identities and the field equations we show how to derive a superfield equation for the divergences of the Noether currents in terms of the supercurrent and anomaly superfields containing 16_B+16_F components. We refer to this as the natural supercurrent structure as it is invariant under all local symmetries of the theory. It corresponds to the S-multiplet of Komargodski and Seiberg. We clarify the on/off-shell nature of the currents appearing in this multiplet and we study in detail the effect of specific improvement transformations leading to 1) a Ferrara-Zumino multiplet and to 2) a multiplet containing the new improved energy-momentum tensor of Callan, Coleman and Jackiw. Our methods also apply to supersymmetric gauge theories with a Fayet-Iliopoulos term. We construct the natural supercurrent multiplet for such a theory and show how to improve this to a formally gauge-invariant Ferrara-Zumino multiplet by introducing a non-dynamical chiral superfield S to ensure superfield gauge invariance. Finally we study the coupling of this theory to supergravity and show that S remains non-dynamical if the theory is R-symmetric and that S becomes propagating if the theory is not R-symmetric, leading to non-minimal 16_B+16_F supergravity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lifshitz space–times with critical exponent z = 2 can be obtained by dimensional reduction of Schrödinger space–times with critical exponent z = 0. The latter space–times are asymptotically anti-de Sitter (AdS) solutions of AdS gravity coupled to an axion–dilaton system (or even just a massless scalar field). This basic observation is used to perform holographic renormalization for four-dimensional asymptotically locally Lifshitz space–times by dimensional reduction of the corresponding problem of holographic renormalization for five-dimensional asymptotically AdS space–times coupled to an axion–dilaton system. In this setup the four-dimensional structure of the Lifshitz – Fefferman-Graham expansion and the structure of the counterterm action, including the scale anomaly, will be summarized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Direct Boundary Element Method (DBEM) is presented to solve the elastodynamic field equations in 2D, and a complete comprehensive implementation is given. The DBEM is a useful approach to obtain reliable numerical estimates of site effects on seismic ground motion due to irregular geological configurations, both of layering and topography. The method is based on the discretization of the classical Somigliana's elastodynamic representation equation which stems from the reciprocity theorem. This equation is given in terms of the Green's function which is the full-space harmonic steady-state fundamental solution. The formulation permits the treatment of viscoelastic media, therefore site models with intrinsic attenuation can be examined. By means of this approach, the calculation of 2D scattering of seismic waves, due to the incidence of P and SV waves on irregular topographical profiles is performed. Sites such as, canyons, mountains and valleys in irregular multilayered media are computed to test the technique. The obtained transfer functions show excellent agreement with already published results.