692 resultados para SATURABLE ABSORBER
Resumo:
To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate concentrations to induce gene amplification. Stably transfected clones were characterized by Southern blotting; those with highest copy numbers of pFR400 alone (pFR400) or pFR400 and pMAAT2 (pFR400/pMAAT2) were expanded for further study. [3H]Oleate uptake was measured in medium containing 500 microM bovine serum albumin and 125-1000 microM total oleate (unbound oleate, 18-420 nM) and consisted of saturable and nonsaturable components. pFR400/pMAAT2 cells exhibited no increase in the rate constant for nonsaturable oleate uptake or in the uptake rate of [14C]octanoate under any conditions. By contrast, Vmax (fmol/sec per 50,000 cells) of the saturable oleate uptake component increased 3.5-fold in pFR400/pMAAT2 cells compared to pFR400, with a further 3.2-fold increase in the presence of Zn2+. Zn2+ had no effect in pFR400 controls (P > 0.5). The overall increase in Vmax between pFR400 and pFR400/pMAAT2 in the presence of Zn2+ was 10.4-fold (P < 0.01) and was highly correlated (r = 0.99) with expression of FABPpm in plasma membranes as determined by Western blotting. Neither untransfected 3T3 nor pFR400 cells expressed cell surface FABPpm detectable by immunofluorescence. By contrast, plasma membrane immunofluorescence was detected in pFR400/pMAAT2 cells, especially if cultured in 100 microM Zn2+. The data support the dual hypotheses that mAspAT and FABPpm are identical and mediate saturable long-chain free fatty acid uptake.
Resumo:
This book illustrates how the structure of the US banking market and the existence of federal institutions allowed regional financial shocks to be absorbed at the federal level in the US, thus avoiding local financial crisis. The authors argue that the experience of the US shows the importance of a ‘banking union’ to avoid severe regional (national) financial dislocation in the wake of regional boom and bust cycles. They also discuss the extent to which the institutions of the partial banking union, now in the process of being created for the euro area, should be able to increase its capacity to deal with future regional boom and bust cycles, thereby stabilising the single currency.
Resumo:
"Contract No. AT(30-1)-2740."
Resumo:
It is shown, through numerical simulations, that by using a combination of dispersion management and periodic saturable absorption it is possible to transmit solitonlike pulses with greatly increased energy near to the zero net dispersion wavelength. This system is shown to support the stable propagation of solitons over transoceanic distances for a wide range of input powers.
Resumo:
It is shown, through numerical simulations, that by using a combination of dispersion management and periodic saturable absorption it is possible to transmit solitonlike pulses with greatly increased energy near to the zero net dispersion wavelength. This system is shown to support the stable propagation of solitons over transoceanic distances for a wide range of input powers.
Resumo:
The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.
Resumo:
In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.
Resumo:
Semiconductor lasers have the potential to address a number of critical applications in advanced telecommunications and signal processing. These include applications that require pulsed output that can be obtained from self-pulsing and mode-locked states of two-section devices with saturable absorption. Many modern applications place stringent performance requirements on the laser source, and a thorough understanding of the physical mechanisms underlying these pulsed modes of operation is therefore highly desirable. In this thesis, we present experimental measurements and numerical simulations of a variety of self-pulsation phenomena in two-section semiconductor lasers with saturable absorption. Our theoretical and numerical results will be based on rate equations for the field intensities and the carrier densities in the two sections of the device, and we establish typical parameter ranges and assess the level of agreement with experiment that can be expected from our models. For each of the physical examples that we consider, our model parameters are consistent with the physical net gain and absorption of the studied devices. Following our introductory chapter, the first system that we consider is a two-section Fabry-Pérot laser. This example serves to introduce our method for obtaining model parameters from the measured material dispersion, and it also allows us to present a detailed discussion of the bifurcation structure that governs the appearance of selfpulsations in two-section devices. In the following two chapters, we present two distinct examples of experimental measurements from dual-mode two-section devices. In each case we have found that single mode self-pulsations evolve into complex coupled dualmode states following a characteristic series of bifurcations. We present optical and mode resolved power spectra as well as a series of characteristic intensity time traces illustrating this progression for each example. Using the results from our study of a twosection Fabry-Pérot device as a guide, we find physically appropriate model parameters that provide qualitative agreement with our experimental results. We highlight the role played by material dispersion and the underlying single mode self-pulsing orbits in determining the observed dynamics, and we use numerical continuation methods to provide a global picture of the governing bifurcation structure. In our concluding chapter we summarise our work, and we discuss how the presented results can inform the development of optimised mode-locked lasers for performance applications in integrated optics.
Resumo:
The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) on aluminum substrates. The most common industrial high performing solar selective absorbers are nowadays produced by vacuum deposition methods, showing some disadvantages, such as lower durability, lower resistance to corrosion, adhesion and scratch, higher cost and complex production techniques. Currently, spectrally selective paints are a potential alternative for absorbing surfaces in low temperature applications, with attractive features such as ease of processing, durability and commercial availability with low cost. Solar absorber surfaces were submitted to accelerated ageing tests, specified in ISO 22975-3. This standard is applicable to the evaluation of the long term behavior and service life of selective solar absorbers for solar collectors working under typical domestic hot water system conditions. The studied coatings have, in the case of PVDs solar absorptions between 0.93 and 0.96 and emittance between 0.07 and 0.10, and in the case of PCs, solar absorptions between 0.91 and 0.93 and emittance between 0.40 and 0.60. In addition to evaluating long term behavior based on artificial ageing tests, it is also important to know the degradation mechanism of different coatings that are currently in the market. Electrochemical impedance spectroscopy (EIS) allows for the assessment of mechanistic information concerning the degradation processes, providing quantitative data as output, which can easily relate to the kinetic parameters of the system. EIS measures were carried out on Gamry FAS2 Femostat coupled with a PCL4 Controller. Two electrolytes were used, 0.5 M NaCl and 0.5 M Na2SO4, and the surfaces were tested at different immersion times up to 4 weeks. The following types of specimens have been tested: Aluminium with/without surface treatment, 3 selective paint coatings (one with a poly(urethane) binder and two with silicone binders) and 2 PVD coatings. Based on the behaviour of the specimens throughout the 4 weeks of immersion, it is possible to conclude that the coating showing the best protective properties corresponds to the selective paint coating with a polyurethane resin followed by the other paint coatings, whereas both the PVD coatings do not confer any protection to the substrate, having a deleterious effect as compared to the untreated aluminium reference.