688 resultados para SAFER
Resumo:
The stock dynamics of horse mackerel, Megalaspis cordyla, along the northwest coast of India has been studied using length frequency data recorded from commercial landings and trawl catches of research-cum-training vessel M.F.V. Saraswati. The growth parameters for this species has been estimated to be L=54 cm and K=0.49 per annum. The natural and fishing mortality for the stock have been worked out to be 0.93 and 0.91 per annum respectively. The study indicated that the stock is fished at a safer fishing mortality level F sub(0.1), lower than F sub(msy) level.
Resumo:
Fish are an important part of a healthy diet since they contain high quality protein, but typically present a low fat percent when compared to other meats. Fish is an extremely perishable food commodity. On the other hand, food borne diseases are still a major problem in the world, even in well-developed countries. The increasing incidence of food borne diseases coupled with the resultant social and economic implications means there is a constant striving to produce safer food and to develop new antimicrobial agents concerns over the safety of some chemical preservatives and negative consumer reactions to preservatives they perceive as chemical and artificial, have prompted on increased interest in more naturalgreen alternatives for the maintenance or extension of product shelf-life. Particular interest has focused on the potential applications of plant essential oils. However, to establish the usefulness of natural antimicrobial preservatives, they must be evaluated alone and in combination with other preservation factors to determine whether there are synergistic effects and multiple hurdles can be devised. In this study, were evaluated the effects of different concentrations of Rosmarinus officinalis and nisin and storage time (15 days) on growth of Streptococcus iniae GQ850377 in a lab conditions and a food model system (fillets of rainbow trout) in 4 and 8 C. In addition, we also studied multi factorial effects of four different concentration of rosemary, three different concentrations of nisin, two different levels of pH in 3 temperature 4,15 and 37 C on log% of S.iniae during 43 days in BHI broth. The results on growth of S. iniae were evaluated using SPSS 20.0 statistical software and analyzed the logarithm of total count of the bacterial by Tukey Test. Results were considered statistically significant when P<0.05. MIC and MBC values of rosemary and nisin were 0.03, 0.075 % and 5, 40 g/mL, respectively. The growth of S. iniae was effected significantly (P<0.05) by rosemary and nisin and also combination of rosemary and nisin in 4 and 8 C. Samples treated with 0.135 and 0.405 % of rosemary showed a significant decrease on the growth of the bacteria compared with control sample(P<0.05). The most inhibitory effects were seen in samples treated with 0.135 and 0.405% of rosemary until 9 days after storage. Also, the synergism effects of rosemary and nisin on the growth rate of bacteria was significant (P<0.05) compared with untreated samples and samples treated with the rosemary or nisin, only. Synergistic effects was observed at concentration of 0.405% rosemary and 0.75 g/mL nisin in both temprature. Results of this study showed that different concentration of rosemary a significant inhibitory effect (P<0.05) on log% of S. iniae, in BHI broth in pH 5.5 and 7 in 4,15 and 37 C during 43 days. In concentration of 0% rosemary (control) in pH 5.5 and 7 and 37C, log% were 1.099 and 3.15, whereas in concentration of 0.015% rosemary were -4/241 and 1.454, respectively. The use of essential oils may improve food safety and overall microbial quality. If essential oils were to be more widely applied as antibacterials in foods, the organoleptic impact would be important. In addition, it is recommended to apply essential oils or their compounds as part of a hurdle system and to use it as an antimicrobial component along with other preservation techniques. Thus essential of R. officinalis with high antibacterial activity selected in this study could be a potential source for inhibitory substances against some food-borne pathogens and they may be candidates for using in foods or food-processing systems.
Resumo:
There is an increasing demand in developing newer and safer methods in preserving food products.Among which herbal additives seem to attract evermore attention recently.the major advantage of herbal additives is due to their favorable aroma besides their antimicrobial effects and less expensive than chemical additives. Zataria multiflora Boiss is a native Iranian herb which is used vastly as a food preserver essential oils and also medical usage. Metabolites of harmless bacteria, such as Nisin are also known to be safe preservatives that have antimicrobial activity. However to establish the usefulness of natural antimicrobial preservatives, they must be evaluated alone and in combination with other preservation factors to determine whether there are synergistic effects in rigid media . In this study were evaluated the effects of different concentrations of Zataria multiflora (EO 0, 0.005, 0.015, 0.045, 0.135, 0.405 ,0.810 %) and Nisin(0, 0.15, 0.25, 0.75 g/ml) and Storage time (up to 21 days) on growth of Staphylococcus aureus ATCC 6538 in a food model system(light salted fish of silver carp, Hypophthalmichthys molitrix). The results on growth of S. aureus were evaluated using SPSS 15.0 statistical software (SPSS 15.0 for windows, SPSS Inc.) and analyzed the logarithm of total count of the bacteria by Tukey Test. Results were considered statistically significant when P0.05. The growth of Staphylococcus aureus was affected significantly(P<0.05) by EO and Nisin and also combinations of EO and Nisin. Samples treated with 0.135, 0.405 and 0.810% of thyme essential oil showed a significant decrease on the growth of the bacteria compared with an treated samples(P<0.05). No significant difference was seen on the growth of S.aureus in samples treated with lower concentrations of Z.multiflora(below 0.045%) and untreated group(P>0.05). The most inhibitory effects were seen in samples treated with 0.405% and 0.810% of thyme essential oil until 9 and 12 days after storage,respectively. Also there was significant inhibtory effect(P<0.05) in different concentration of nisin on the organism compared with an treated samples. The synergism effects of the Eo and nisin on the growth rate of the bacteria was significant (P<0.05) compared with untreated samples and samples treated with the Eo or nisin, only. Synergismic effects was observed at concentration of 0.405 and 0.810% of Z. multiflora essential oil with 0.25 g/ml Nisin, respectively until 15 days after storage. As expected it is preferred to apply the least possible amounts of additives in food preserving that not only are effective and safe but are economically justifiable.
Resumo:
A clean and healthy environment is paramount to human existence. While pesticide use has successfully sustained agricultural and food production in our lifetime as well as safeguarded human health by controlling insect pests, it has also caused many tragedies including population declines in our wildlife, fatalities in workers exposed to pesticides in its manufacture and use, and the increasing incidence of dreaded human illnesses such as cancer. A delicate balance should be achieved to mitigate the adverse impact of pesticide use to the environment and at the same time ensuring short- and long-term agricultural productivity. Endosulfan has been effectively used as a pesticide, but much evidence on its chronic and sub-lethal effects on humans and wildlife have been gathered in recent years. More research still needs to be done to determine its effects from long-term exposure at very low levels. Endosulfan is highly toxic to fish and other aquatic animals and, thus, not recommended for use in aquatic ecosystems. However, in some countries, it has been incorrectly used as a molluscicide in rice paddies, which could have an adverse impact on the rice-fish farming systems and on other surrounding aquatic ecosystems. It is clear that such practices should be stopped and users must strictly observe the recommended application methods. Agricultural productivity should be achieved with less pesticide by using integrated pest management programs which make use of biological, cultural, and physical control agents and lower doses of safer pesticide on a need only basis. The benefits of biotechnology should also be used to develop more effective and safer products and techniques. This is a valid approach and one that will require a unified and concerted effort among suppliers and users of pesticides in order to ensure that resources are used to our best advantage with minimal risk.
Resumo:
NESSIE(New European Schemes for SignaturesIntegrityand Encryption)200032000111314NESSIENESSIE1791213NESSIENESSIE7IDEAKhazadMISTY1SAFER++CamelliaRC6SHACALNESSIENEESIENESSIENESSIE
Resumo:
5,0001,500WHO50 µg•L-110 µg•L-1 20~400.2 M KBH420 d•min-1Fe/82.0 mg•g-130~500 nm1,000~2,000 nm As()As()As()pHpHAs()12 h72 hLangmuir As()12.0 mg•g-1pH 6.5 (252) As()2 mg•L-11.0 g•L-1As()75.2%1.5 g•L-1As()99.9%0.1MNaOH12 hPO43-SiO32-As()SO42-CO32-C2O42-Fe2+As()0.1 M NaOH As()pHAs()pH 6.5 (252) As()2 mg•L-11.0 g•L-1 As()99.8%1.996mg•g-1As()As()As()-As()As()As() As() As()As()As()As()
Resumo:
Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement.
Resumo:
Projeto de Ps-Graduao/Dissertao apresentado Universidade Fernando Pessoa como parte dos requisitos para obteno do grau de Mestre em Cincias Farmacuticas
Resumo:
Sensor applications in Sensoria [1] are expressed using STEP (Sensorium Task Execution Plan). SNAFU (Sensor-Net Applications as Functional Units) serves as a high-level sensor-programming language, which is compiled into STEP. In SNAFUs current form, its differences with STEP are relatively minor, as they are limited to shorthands and macros not available in STEP. We show that, however restrictive it may seem, SNAFU has in fact universal power; technically, it is a Turing-complete language, i.e., any Turing program can be written in SNAFU (though not always conveniently). Although STEP may be allowed to have universal power, as a low-level language not directly available to Sensorium users, SNAFU programmers may use this power for malicious purposes or inadvertently introduce errors with destructive consequences. In future developments of SNAFU, we plan to introduce restrictions and highlevel features with safety guards, such as those provided by a type system, which will make SNAFU programming safer.
Resumo:
Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spectrum producers were identified through 16S rRNA sequencing with the majority of the population comprising Lactobacillus plantarum isolates. Six broad-spectrum isolates were consequently characterised. Pedicococcus pentosaceous 54 displayed potent anti-mould capabilities in pear, plum and grape models and may represent an ideal candidate for use in the beverage industry. Two antifungal Lb. plantarum isolates were assessed for their technological robustness and potential as biopreservatives in refrigerated foods. Lb. plantarum 16 and 62 displayed high levels of tolerance to freeze-drying, low temperature exposure and high salt concentrations. Both lactobacilli were introduced as supplements into orange juice to retard the growth of the spoilage yeast Rhodotorula mucilaginosa. Furthermore the isolates were applied as adjuncts in yoghurt production to successfully reduce yeast growth. Lb. plantarum 16 proved to be the optimal inhibitor of yeast growth in both food matrices. To date there is limited information available describing the mechanisms behind fungal inhibition by LAB. The effects of concentrated cell-free supernatant (cCFS), derived from Lb. plantarum 16, on the growth of two food-associated moulds was assessed microscopically. cCFS completely inhibited spore, germ tube and hyphal development. A transcriptomic approach was undertaken to determine the impact of antifungal activity on Aspergillus fumigatus Af293. A variety of genes, most notably those involved in cellular metabolism, were found to have their transcription modulated in response to cCFS which is indicative of global cellular shutdown. This study provides the first insights into the molecular targets of antifungal compounds produced by LAB. The genome sequence of the steep water isolate Lb. plantarum 16 was determined. The complete genome of Lb. plantarum16 consists of a single circular chromosome of 3,044,738 base pairs with an average G+C content of 44.74 % in addition to eight plasmids. The genome represents the smallest of this species to date while harbouring the largest plasmid complement. Some features of particular interest include the presence of two prophages, an interrupted plantaricin cluster and a chromosomal and plasmid encoded polysaccharide cluster. The sequence presented here provides a suitable platform for future studies elucidating the mechanisms governing antifungal production.
Resumo:
Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria, cabin crew training and in post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. In this paper the capabilities and limitations of the airEXODUS evacuation model are described. Its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described. Finally, the data requiremnets of the airEXODUS evacuation model is discussed along with several projects currently underway at the the Univesity of Greenwich designed to obtain this data. Included in this discussion is a description of the AASK - Aircraft Accident Statistics and Knowledge - data base which contains detailed information from aircraft accident survivors.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in cabin crew training and post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation `Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
Computer based mathematical models describing aircraft fire have a role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost involved in performing large-scale fire experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be prohibitively high, the development and use of these modelling tools may become essential if these aircraft are to prove a safe and viable reality. By describing the present capabilities and limitations of aircraft fire models, this paper will examine the future development of these models in the areas of large scale applications through parallel computing, combustion modelling and extinguishment modelling.