999 resultados para Rothamsted Experimental Station.
Resumo:
Date of acceptance: 06/12/2014 Acknowledgments The study was funded by the Portuguese Ministry of Science (Fundac¸a˜o para a Cieˆncia e Tecnologia– FCT) through a PhD Grant of SG (SFRH/BD/47931/2008). We would like to thank the captain of the purse-seiner (Jose´ Manuel Saveedra) and his crew for facilitating the capture and transport of live fish. Moreover, we want to thank Ana Marc¸alo for suggestions on the experimental design, Manuel Garci for technical advice on underwater video recordings and James Turner from the company Future Oceans for providing technical details on the 70 kHz dolphin pingers. We would also like to acknowledge the scientific advice of Dr. Jose´ Iglesias and the technical and logistic support for the preparation of the laboratory and the materials for tank experiments by Enrique Martı´nez Gonza´lez, Ricardo Pazo´and other staff at the aquaculture facilities of the Spanish Institute for Oceanography (IEO) and the Marine Sciences Station of Toralla (ECIMAT) in Vigo. Furthermore, we are grateful to Francisco de la Granda Grandoso for his practical assistance during the fish tank experiments and to Juan Santos Blanco for helping with statistical analysis. Finally, we would like to thank Pilar Riobo´ Agula, Amelia Fernandez Villamarin, Jose´ Franco Soler, Jose´ Luis Mun˜oz, Angela Benedetti, Marcos Antonio Lopez Patin˜o and Marta Conde Sieira for scientific advice and practical support with cortisol analysis and Rosana Rodrı´guez for preparing histological samples for us.
Resumo:
Array measurements have become a valuable tool for site response characterization in a non-invasive way. The array design, i.e. size, geometry and number of stations, has a great influence in the quality of the obtained results. From the previous parameters, the number of available stations uses to be the main limitation for the field experiments, because of the economical and logistical constraints that it involves. Sometimes, from the initially planned array layout, carefully designed before the fieldwork campaign, one or more stations do not work properly, modifying the prearranged geometry. Whereas other times, there is not possible to set up the desired array layout, because of the lack of stations. Therefore, for a planned array layout, the number of operative stations and their arrangement in the array become a crucial point in the acquisition stage and subsequently in the dispersion curve estimation. In this paper we carry out an experimental work to analyze which is the minimum number of stations that would provide reliable dispersion curves for three prearranged array configurations (triangular, circular with central station and polygonal geometries). For the optimization study, we analyze together the theoretical array responses and the experimental dispersion curves obtained through the f-k method. In the case of the f-k method, we compare the dispersion curves obtained for the original or prearranged arrays with the ones obtained for the modified arrays, i.e. the dispersion curves obtained when a certain number of stations n is removed, each time, from the original layout of X geophones. The comparison is evaluated by means of a misfit function, which helps us to determine how constrained are the studied geometries by stations removing and which station or combination of stations affect more to the array capability when they are not available. All this information might be crucial to improve future array designs, determining when it is possible to optimize the number of arranged stations without losing the reliability of the obtained results.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
"NBS project 0603-11-3519."
Resumo:
"Second report"--T.p.
Resumo:
"Fifth report"--T.p.
Resumo:
"First report"--T.p.
Resumo:
"May 1996."
Resumo:
"United States Department of Agriculture in cooperation with the South Carolina Agricultural Experiment Station."
Resumo:
"April 1997."
Resumo:
Cover title.
Resumo:
Commercial exploitation and abrupt changes of the natural conditions may have severe impacts on the Arctic deep-sea ecosystem. The present recolonisation experiment mimicked a situation after a catastrophic disturbance (e.g. by turbidites caused by destabilized continental slopes after methane hydrate decomposition) and investigated if the recolonisation of a deep-sea habitat by meiobenthic organisms is fostered by variations innutrition and/or sediment structure. Two "Sediment Tray Free Vehicles" were deployed for one year in summer 2003 at 2500 m water depth in the Arctic deep-sea in the eastern Fram Strait. The recolonisation trays were filled with different artificial and natural sediment types (glass beads, sand, sediment mixture, pure deep-sea sediment) and were enriched with various types of food (algae, yeast, fish). After one year, meiobenthos abundances and various sediment related environmental parameters were investigated. Foraminifera were generally the most successful group: they dominated all treatments and accounted for about 87% of the total meiobenthos. Colonizing meiobenthos specimens were generally smaller compared to those in the surrounding deep-sea sediment, suggesting an active recolonisation by juveniles. Although experimental treatments with fine-grained, algae-enriched sediment showed abundances closest to natural conditions, the results suggest that food availability was the main determining factor for a successful recolonisation by meiobenthos and the structure of recolonised sediments was shown to have a subordinate influence.
Resumo:
During the years 1957-64, eight local earthquakes have been recorded at the station of Nhatrang. A description of these quakes has been done and a drawing of experimental travel-time curves of different phases has been attempted