936 resultados para Robot control
Resumo:
Most animals have significant behavioral expertise built in without having to explicitly learn it all from scratch. This expertise is a product of evolution of the organism; it can be viewed as a very long term form of learning which provides a structured system within which individuals might learn more specialized skills or abilities. This paper suggests one possible mechanism for analagous robot evolution by describing a carefully designed series of networks, each one being a strict augmentation of the previous one, which control a six legged walking machine capable of walking over rough terrain and following a person passively sensed in the infrared spectrum. As the completely decentralized networks are augmented, the robot's performance and behavior repertoire demonstrably improve. The rationale for such demonstrations is that they may provide a hint as to the requirements for automatically building massive networks to carry out complex sensory-motor tasks. The experiments with an actual robot ensure that an essence of reality is maintained and that no critical problems have been ignored.
Resumo:
Dynamic systems which undergo rapid motion can excite natural frequencies that lead to residual vibration at the end of motion. This work presents a method to shape force profiles that reduce excitation energy at the natural frequencies in order to reduce residual vibration for fast moves. Such profiles are developed using a ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral energy at the natural frequencies of the system. To improve robustness with respect to parameter uncertainty, spectral energy is reduced for a range of frequencies surrounding the nominal natural frequency. An additional set of versine profiles are also constructed to permit motion at constant speed for velocity-limited systems. These shaped force profiles are incorporated into a simple closed-loop system with position and velocity feedback. The force input is doubly integrated to generate a shaped position reference for the controller to follow. This control scheme is evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with minimum residual vibration when actuator saturation is avoided. Feedback control compensates for the effect of friction Using only a knowledge of the natural frequencies of the system to shape the force inputs, vibration can also be attenuated in modes which vibrate in directions other than the motion direction. When moving several axes, the use of shaped inputs allows minimum residual vibration even when the natural frequencies are dynamically changing by a limited amount.
Resumo:
Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.
Resumo:
Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.
Resumo:
This paper describes BUILD, a computer program which generates plans for building specified structures out of simple objects such as toy blocks. A powerful heuristic control structure enables BUILD to use a number of sophisticated construction techniques in its plans. Among these are the incorporation of pre-existing structure into the final design, pre-assembly of movable sub-structures on the table, and use of the extra blocks as temporary supports and counterweights in the course of construction. BUILD does its planning in a modeled 3-space in which blocks of various shapes and sizes can be represented in any orientation and location. The modeling system can maintain several world models at once, and contains modules for displaying states, testing them for inter-object contact and collision, and for checking the stability of complex structures involving frictional forces. Various alternative approaches are discussed, and suggestions are included for the extension of BUILD-like systems to other domains. Also discussed are the merits of BUILD's implementation language, CONNIVER, for this type of problem solving.
Resumo:
Hardy, N. W., Barnes, D. P., Lee, M. (1987). Declarative sensor knowledge in a robot monitoring system. In: Languages for Sensor-Based Control in Robotics, Ulrich Rembold and Klaus H?rmann (eds), Springer-Verlag, p. 169-188.
Resumo:
Barnes, D. P., Lee, M. H., Hardy, N. W. (1983). A control and monitoring system for multiple-sensor industrial robots. In Proc. 3rd. Int. Conf. Robot Vision and Sensory Controls, Cambridge, MA. USA., 471-479.
Resumo:
Q. Meng and M. H. Lee, Learning and Control in Assistive Robotics for the Elderly, IEEE Conference on Robotics, Automation and Mechatronics (RAM), Singapore, 2004.
Resumo:
Sauze, C. and Neal, M. 'An Autonomous Sailing Robot for Ocean Observation', in proceedings of TAROS 2006, Guildford, UK, Sept 4-6th 2006, pages 190-197.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
Background: Transient ischemic attack (TIA) is a condition causing focal neurological deficits lasting less than 24hrs. TIA patients present similarly to other conditions with rapid onset of neurological symptoms such as migraine. The accurate diagnosis of TIA is critical because it serves as a warning for subsequent stroke. Furthermore, cognitive deficit associated with TIA may predict the development of dementia. Therefore, characterizing the cognitive symptoms of TIA patients and discriminating these patients from those with similar symptoms is important for proper diagnosis and treatment. Currently the diagnosis of TIA is made on clinical and radiographic evidence. Robotic assessment, with instruments such as the KINARM, may improve the identification of cognitive impairment in TIA patients. Methods: In this prospective cohort study, two KINARM tests, trail making task (TMT) and spatial span task (SST), were used to detect cognitive deficits. Two study groups were made. The TIA group was tested at 5 time points over the span of a year. The migraine active control group had one initial visit and another a year later. Both of these groups were compared to a normative database of approximately 400 healthy volunteers. From this database age and sex matched normative data was used to calculate Z-scores for the TMT. The Montreal Cognitive Assessment (MoCA) was also administered to both groups. Results: 31 participants were recruited, 20 TIA group and 11 active controls (mean ± SD age= 66 ± 11.3 and 62 ± 14.5). There was no significant difference in TIA and active control group MoCA scores. The TMT was able to detect cognitive impairment in TIA and migraine group. Also, both KINARM tasks could detect significant differences in performance between TIA and migraine patients while the MoCA could not. Changes in TIA and migraine performance on the MoCA, TMT, and SST were observed. Conclusions: The robotic KINARM exoskeleton can be used to assess cognitive deficits in TIA patients.
Resumo:
Parallel robot (PR) is a mechanical system that utilized multiple computer-controlled limbs to support one common platform or end effector. Comparing to a serial robot, a PR generally has higher precision and dynamic performance and, therefore, can be applied to many applications. The PR research has attracted a lot of attention in the last three decades, but there are still many challenging issues to be solved before achieving PRs’ full potential. This chapter introduces the state-of-the-art PRs in the aspects of synthesis, design, analysis, and control. The future directions will also be discussed at the end.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.